Skip to main content
Log in

Application of Polarized Light to Estimate the Bainite Fraction in 44Kh2G2S2MF Steel after Isothermal Hardening. Part 1

  • Published:
Steel in Translation Aims and scope

Abstract

A method has been developed for quantifying the proportion of acicular bainite in structural steel 44Kh2G2S2MF using polarized light. The method refers to the digital direction in metallography and differs from the known analogue in that a combination of crossed nicols and rotation of the test sample around its axis is used to fully identify and accurately quantify bainite in polarized light. The dependence of the brightness level of bainite components on the detection angle of bainite in polarized light has been established, which made it possible to determine the minimum number of necessary images of the structure, which differ in the detection angle of bainite by 45°, to estimate the proportion of bainite in steel 44Kh2G2S2MF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Ericsson, C.E., Bhat, M.S., Parker, E.R., and Zackay, V.F., Isothermal studies of bainitic and martensitic transformations in some low alloy steels, Metall. Trans. A, 1976, vol. 7, pp. 1800–1803. https://doi.org/10.1007/BF02817901

    Article  Google Scholar 

  2. Fondekar, M.K., Rao, A.M., and Mallik, A.K., Strain tempering of bainite, Metall. Trans., 1970, vol. 1, pp. 885–890. https://doi.org/10.1007/BF02811769

    Article  CAS  Google Scholar 

  3. Bhadeshia, H.K.D.H. and Edmonds, D.V., The bainite transformation in a silicon steel, Metall. Trans. A, 1979, vol. 10, pp. 895–906. https://doi.org/10.1007/BF02658309

    Article  Google Scholar 

  4. Huang, D.-H. and Thomas, G., Metallography of bainitic transformation in silicon containing steels, Metall. Trans. A, 1977, vol. 8, pp. 1661–1674. https://doi.org/10.1007/BF02646868

    Article  Google Scholar 

  5. Barakhtin, B.K. and Zvorygin, R.G., Geometrical models of bainite-martensite phases by the data of multifractal image analysis of steel structures, Vestn. Samarsk. Gos. Tekh. Univ. Ser.: Fiz.-Mat. Nauki, 2004, no. 27, pp. 100–103.

  6. Kaletin, A.Yu. and Kaletina, Yu.V., Evolution of the structure and properties of silicon steels in the austenite–bainite phase transition, Phys. Solid State, 2015, vol. 57, no. 1, pp. 59–64. https://doi.org/10.1134/S106378341501014X

    Article  CAS  Google Scholar 

  7. Popelyukh, P.A., Popelyukh, A.I., and Yurkevich, A.R., Combined thermomechanical treatment of steel with martensite–bainite transformation of austenite, Obrab. Met., 2013, no. 2, pp. 62–68.

  8. Gaballero, F.G., Miller, M.K., Babu, S.S., and Garcia-Mateo, C., Atomic scale observations of bainite transformation in a high carbon high silicon steel, Acta Mater., 2007, no. 55, pp. 381–390. https://doi.org/10.1016/j.actamat.2006.08.033

  9. Khare, S., Lee, K., and Bhadeshia, H.K.D.H., Carbide-free bainite: Compromise between rate of transformation and properties, Metall. Mater. Trans. A, 2010, vol. 41, pp. 922–928. https://doi.org/10.1007/s11661-009-0164-z

    Article  CAS  Google Scholar 

  10. Pashangeh, S., Banadkouki, S.S.G., and Somani, M.C., Abnormal mechanical response in a silicon bearing medium carbon low alloy steel following quenching and bainitic holding versus quenching and partitioning treatment, J. Mater. Res. Technol., 2020, vol. 9, no. 3, pp. 5007–5023. https://doi.org/10.1016/j.jmrt.2020.03.019

    Article  CAS  Google Scholar 

  11. Yurchenko, A.N. and Simonov, Yu.N., Microstructural features, mechanical properties and heat treatment of bainitic steel, Vestn. Permsk. Nats. Issled. Politekh. Univ. Mashinostr. Materialoved., 2016, vol. 18, no. 3, pp. 160–181. https://doi.org/10.15593/2224-9877/2016.3.12

    Article  Google Scholar 

  12. Kazakov, A.A., Kazakova, E.I., Kiselev, D.V., and Kurochkina, O.V., Approach to study the structure of pipe steels, RF Patent no. 2449055, Byull. Izobret., 2012, no. 12.

  13. Kazakov, A., Kiselev, D., and Pakhomova, O., Microstructural quantification for pipeline steel structure-property relationships, CIS Iron Steel Rev., 2012, no. 1, pp. 4–12.

  14. Smallman, R.E. and Ashbee, K.H.G., Modern Metallography, Oxford: Pergamon Press, 2013.

    Google Scholar 

  15. Metallovedenie i termicheskaya obrabotka stali. Sprav. izd. v 3-kh t. (Metals Science and Heat Treatment: Reference Book in 3 Volumes), Bernshtein, M.L. and Rakhshtadt, A.G., Eds., vol. 1: Metody ispytanii i issledovaniya (Methods of Testing and Research), book 1, Moscow: Metallurgiya, 1991.

  16. Efimova, O.V. and Yurchenko, A.N., Study of the microstructure of steels 29H2G2S2MF and 44H2G2S2MF after isothermal quenching in polarized light, Materialy 4-i nauch.-prakt. konf. s mezhdunarodnym uchastiem. ITMM-2019 (Proc. 4th Sci.-Pract. Conf. with Int. Participation. ITMM-2019), Yekaterinburg: Ural. Univ., 2019, pp. 100-102.

  17. Yurchenko, A.N. and Simonov, Yu.N., Approach for revealing bainite in steel, RF Patent no. 2734878, Byull. Izobret., 2020, no. 30.

  18. Bhadeshia, H.K.D.H., Bainite in Steels, London: IOM Communications, 2001.

    Google Scholar 

  19. Simonov, Yu.N., Simonov, M.Yu., Panov, D.O., Vylezhnev, V.P., and Kaletin, A.Yu., Formation of structure of lower carbide-free bainite due to isothermal treatment of steels of types Kh3G3MFS and KhN3MFS, Met. Sci. Heat Treat., 2016, vol. 58, no. 2, pp. 61–70. https://doi.org/10.1007/s11041-016-9965-z

    Article  CAS  Google Scholar 

  20. Tereshchenko, N.A., Yakovleva, I.L., Kabanova, I.G., and Mirzaev, D.A., Special misorientations in low-temperature isothermal bainite of high-carbon manganese–silicon steel, Phys. Met. Metallogr., 2019, vol. 120, no. 9, pp. 874–880. https://doi.org/10.1134/S0031918X1907010X

    Article  CAS  Google Scholar 

  21. Lobanov, M.L., Rusakov, G.M., Urtsev, V.N., Krasnov, M.L., Mokshin, E.D., Shmakov, A.V., and Platov, S.I., Thermal effect of bainitic transformation in tube steels during accelerated cooling, Lett. Mater., 2018, vol. 8, no. 3, pp. 246–251. https://doi.org/10.22226/2410-3535-2018-3-246-251

    Article  Google Scholar 

  22. Aksenova, K.V., Nikitina, E.N., Ivanov, Yu.F., and Kosinov, D.A., Strain hardening of bainitic and martensitic steel in compression, Steel Transl., 2018, vol. 48, no., pp. 631–636. https://doi.org/10.3103/S0967091218100029

  23. Shen, Ya., Chen, B., and Wang, C., In situ observation and growth kinetics of bainite laths in the coarsegrained heat-affected zone of 2.25Cr-1Mo heat-resistant steel during simulated welding, Metall. Mater. Trans. A, 2021, vol. 52, pp. 14–19. https://doi.org/10.1007/s11661-020-06061-z

    Article  CAS  Google Scholar 

  24. Rampelberg, C., Allain, S.Y.P., Geandier, G., Teixeira, J., Lebel, F., and Sourmail, T., Carbide-free bainite transformations above and below martensite start temperature investigated by in-situ high-energy X-ray diffraction, JOM, 2021, vol. 73, no. 11, pp. 3181–3194. https://doi.org/10.1007/s11837-021-04903-8

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Yurchenko.

Additional information

Translated by Sh. Galyaltdinov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yurchenko, A.N., Simonov, Y.N. Application of Polarized Light to Estimate the Bainite Fraction in 44Kh2G2S2MF Steel after Isothermal Hardening. Part 1. Steel Transl. 53, 86–91 (2023). https://doi.org/10.3103/S0967091223010151

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0967091223010151

Keywords:

Navigation