Skip to main content
Log in

Investigation of Oxidation of Iron-Ore Materials upon Heating

  • Published:
Steel in Translation Aims and scope

Abstract—

Kinetic characteristics of oxidation of samples prepared form Ol’khovka magnetite and Kachkanar titanium-magnetite concentrate, and also of fluxed and nonfluxed pellets from Kachkanar ore at moderate and high temperatures, were determined by physicochemical analysis using experimental techniques. The method for determining the completeness of oxidation processes was developed. Dependences of the effective oxygen diffusion coefficient on temperature were obtained for fluxed and nonfluxed pellets. The effective diffusion coefficients of oxygen in pellets roasted in the isothermal and non-isothermal heating were found to be almost identical. The temperature ranges were found in which the basicity of the pellets has a negligible effect on the oxygen diffusion. Using the kinetic dependences of the isothermal oxidation of the studied materials, the effective activation energy at the given oxidation completeness values was calculated. Obtained results are of interest for specialists searching for the optimal parameters of roasting of magnetite pellets in conveyor lines. They may help to decrease the specific fuel consumption during roasting and achieve an economic gain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Kumar, T.K.S., Viswanathan, N.N., Ahmed, H., Dahlin, A., Andersson, C., and Bjorkman, B., Investigation of magnetite oxidation kinetics at the particle scale, Metall. Mater. Trans. B, 2019, vol. 50, no. 1, pp. 150–161. https://doi.org/10.1007/s11663-018-1459-5

    Article  CAS  Google Scholar 

  2. Sardari, A., Alamdari, E.K., Noaparast, M., and Shafaei, S.Z., Kinetics of magnetite oxidation under non-isothermal conditions, Int. J. Miner., Metall., Mater., 2017, vol. 24, no. 5, pp. 486–492. https://doi.org/10.1007/s12613-017-1429-y

    Article  CAS  Google Scholar 

  3. Yang, X.F., Mechanism of roasting and agglomeration on the pellets produced by blended iron ore fines of hematite and magnetite, J. Iron Steel Res., 2010, vol. 22, no. 2, pp. 6–8.

    CAS  Google Scholar 

  4. Guo, Y., Xie, J., Gao, J., Xu, H., and Qie, J., Study of the production and metallurgical properties of fluxed pellets with high hematite content, Metallurgist, 2017, vol. 61, nos. 7–8, pp. 638–645. https://doi.org/10.1007/s11015-017-0545-2

    Article  CAS  Google Scholar 

  5. Zaitsev, A.K., Makeev, S.A., Valavin, V.S., and Pohkvisnev, Yu.V., Dissociation of hematite during dissolution in slag, Izv. Vyssh. Uchebn. Zaved., Chern. Metall., 2013, no. 7, pp. 57–61.

  6. Kuznetsov, Yu.S. and Kachurina, O.I., Reduction of iron oxides by carbon and water vapor, Steel Transl., 2019, vol. 49, no. 5, pp. 306–318. https://doi.org/10.3103/S0967091219050073

    Article  Google Scholar 

  7. Krutilin, A.N., Kukharchuk, M.N., and Sycheva, O.A., Solid-phase reduction of iron oxides by carbon, Lit’e Metall., 2012, no. 2, pp. 11–16.

  8. Vyatkin, G.P., Mikhailov, G.G., Kuznetsov, Yu.S., Kachurina, O.I., and Digonskii, S.V., Reduction of iron oxides in a humid atmosphere, Steel Transl., 2012, vol. 42, no. 2, pp. 103–106. https://doi.org/10.3103/S0967091212020301

    Article  Google Scholar 

  9. Avdonina, M.P., Study of mineral generation at roasting and sintering of Kachkanar titanium magnetite concentrate, Cand. Sci. (Eng.) Dissertation, Sverdlovsk: Sverdlovsk. Gornyi Inst., 1975.

  10. Bulakh, A.G., Zolotarev, A.A., and Krivovichev, V.G., Obshchaya mineralogiya (General Mineralogy), Moscow: Akademiya, 2008.

  11. Zhukov, Yu.S., Korshunova, N.G., Rekhter, V.Ya., et al., Study of hematite dissociation in iron-ore pellets in combined installations, Izv. Vyssh. Uchebn. Zaved., Chern. Metall., 1984, no. 6, pp. 17–20.

  12. Yur’ev, B.P. and Dudko, V.A., Study of the mechanism and kinetics of the restoration of hematites, Russ. J. Phys. Chem. B, 2022, vol. 16, no. 1, pp. 31–38. https://doi.org/10.1134/S1990793122010171

    Article  Google Scholar 

  13. Yur’ev, B.P. and Dudko, V.A., Optimization of the iron-ore pellet annealing process on conveyor machines considering the layer’s physicochemical process run, Steel Transl., 2020, vol. 50, no. 9, pp. 611–617. https://doi.org/10.3103/S0967091220090119

    Article  Google Scholar 

  14. Abzalov, V.M., Gorbachev, V.A., Evstyugin, S.N., et al., Fiziko-khimicheskie i teplotekhnicheskie osnovy proizvodstva zhelezorudnykh okatyshei (Physicochemical and Thermal Engineering Foundations of Iron-Ore Pellet Manufacture), Leont’ev, L.I., Ed., Yekaterinburg: MITs, 2015.

  15. Yur’ev, B.P., Bruk, L.B., Spirin, N.A., Sheshukov, O.Yu., Gol’tsev, V.A., Shevchenko, O.I., and Metelkin, A.A., Osnovy teorii protsessov pri obzhige zhelezorudnykh okatyshei (Foundations of the Theory of Processes at Annealing of Iron-Ore Pellets), Nizhnii Tagil: Nizhne-Tagil. Tekhnol. Inst. (Filial) Ural. Fed. Univ., 2018.

  16. Gribanova, E.V., Kuchek, A.E., Vasiljeva, E.S., Voloshin, A.A., and Shutkevich, V.V., The influence of modification of the surface of magnetite and hematite on their surface properties, Vestnik S.-Peterb. Univ., Ser. 4: Fiz. Khim., 2007, no. 2, pp. 73–79.

  17. Yur’ev, B.P. and Gol’tsev, V.A., Oxidation of magnetite, Steel Transl., 2016, vol. 46, no. 10, pp. 718–721. https://doi.org/10.3103/S0967091216100144

    Article  Google Scholar 

  18. Kachula, B.V., Studying the volumetric variations and strength properties of titanium magnetite concentrate pellets in the reduction process, Cand. Sci. (Eng.) Dissertation, Sverdlovsk: Inst. Metallurgii Ural. Otd. Ross. Akad. Nauk, 1973.

  19. Gorbachev, V.A., Abzalov, V.M., and Yur’ev, B.P., Conversion of magnetite to hematite in iron-ore pellets, Steel Transl., 2007, vol. 37, no. 4, pp. 336–338. https://doi.org/10.3103/S0967091207040031

    Article  Google Scholar 

  20. Yur’ev, B.P. and Spirin, N.A., Oxidation of iron-ore pellets, Steel Transl., 2011, vol. 41, pp. 400–403. https://doi.org/10.3103/S0967091211050202

    Article  Google Scholar 

  21. Melamud, S.G., Yur’ev, B.P., and Gol’tsev, V.A., Study of the process of oxidation in iron-ore materials at low temperatures, Izv. Vyssh. Uchebn. Zaved., Chern. Metall., 2017, vol. 60, no. 6, pp. 474–480. https://doi.org/10.17073/0368-0797-2017-6-474-480

    Article  CAS  Google Scholar 

  22. Petrov, L.V. and Solyanikov, V.M., Oxygen absorption by the ternary styrene epoxide–copper(II) chloride–ionol system in a methanol solution, Russ. J. Phys. Chem. B, 2021, vol. 15, no. 4, pp. 599–603. https://doi.org/10.1134/S1990793121040084

    Article  CAS  Google Scholar 

  23. Shaitura, N.S. and Larichev, M.N., Mathematical modeling of the process of oxidation of dispersed aluminum by water, Russ. J. Phys. Chem. B, 2020, vol. 14, no. 5, pp. 760–764. https://doi.org/10.1134/S1990793120050103

    Article  CAS  Google Scholar 

  24. Mantashyan, A.A., Variety of kinetic manifestations of branched chain reactions, Russ. J. Phys. Chem. B, 2021, vol. 15, no. 2, pp. 233–241. https://doi.org/10.1134/S1990793121020214

    Article  CAS  Google Scholar 

  25. Kol’tsov, N.I., Nonlinear kinetic conservation laws in nonlinear chemical reactions, Russ. J. Phys. Chem. B, 2021, vol. 15, no. 6, pp. 954–959. https://doi.org/10.1134/S199079312106004X

    Article  Google Scholar 

  26. Wendlandt, W.M., Thermal Methods of Analysis, New York: John Wiley & Sons, 1974, 2nd ed.

    Google Scholar 

  27. Mehrer, H., Diffusion in Solids: Fundamentals, Methods, Materials, Diffusion-Controlled Processes, Springer Series in Solid-State Sciences, vol. 155, Berlin: Springer, 2007. https://doi.org/10.1007/978-3-540-71488-0

  28. Frank-Kamenetskii, D.A., Osnovy makrokinetiki. Diffuziya i teploperedacha v khimicheskoi kinetike (Foundations of Macrokinetics: Diffusion and Heat Transfer in Chemical Kinetics), Moscow: Intellekt, 2008.

  29. Gorbachev, V.A., Abzalov, V.M., and Yur’ev, B.P., Reaction zone behaviour at iron ore pellets oxidizing roasting, Izv. Vyssh. Uchebn. Zaved., Chern. Metall., 2007, no. 6, pp. 11–13.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Dudko.

Additional information

Translated by S. Efimov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yur’ev, B.P., Dudko, V.A. Investigation of Oxidation of Iron-Ore Materials upon Heating. Steel Transl. 52, 1061–1067 (2022). https://doi.org/10.3103/S0967091222110146

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0967091222110146

Keywords:

Navigation