Skip to main content
Log in

Development of Temperature-Rate Modes of Hot Deformation of the Co–28Cr–6Mo Alloy Based on Processing Maps

  • Published:
Steel in Translation Aims and scope

Abstract

The Co–28Cr–6Mo medical alloy after homogenization is tested in uniaxial compression at temperatures of 1000, 1100, and 1200°C and strain rates of 1, 10, and 50 s–1 using the Gleeble System 3800. The stress-strain curves describing the deformation behavior of the alloy are obtained. Using three models (power-law, exponential, and hyperbolic sine function) describing the flow stress, hot deformation parameters are calculated (activation energy and Zener–Hollomon parameter). The results of calculations based on the power-law and hyperbolic sine functions show the highest degree of convergence. These models can be used to accurately calculate the flow stress for given parameters of temperature and strain rate or to simulate the deformation process. Also, based on processing maps, the strain-rate modes of hot deformation of the Co–28Cr–6Mo alloy are developed, which will make it possible to select the optimal rolling modes in the future. According to the data obtained, as strain accumulates, the favorable temperature-rate conditions for hot deformation shift to the region of high temperatures and low strain rates. In this case, the extremely unfavorable zone with negative values of the plastic flow stability criterion ξ, which appears at values of the deformation parameter e = 0.3–0.4, continues to grow quite significantly with increasing strain. Hot deformation of the Co–28Cr–6Mo alloy at low compression ratios (e < 0.2) is more appropriate at temperatures above 1150°C and strain rates of at least 20 s–1. As the degree of deformation increases, lower strain rates (1–5 s–1) and higher deformation temperature should be used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Dobbs, H.S. and Robertson, J.L.M., Heat treatment of cast Co–Cr–Mo for orthopedic implant use, J. Mater. Sci., 1983, vol. 18, pp. 391–401. https://doi.org/10.1007/BF00560627

    Article  CAS  Google Scholar 

  2. Niinomi, M., Nakai, M., and Hieda, J., Development of new metallic alloys for biomedical applications, Acta Biomaterialia, 2012, vol. 8, no. 11, pp. 3888–3903. https://doi.org/10.1016/j.actbio.2012.06.037

    Article  CAS  Google Scholar 

  3. Moradi, S.M., Zangeneh, S., Vardak, S., and Bahrami, R., New Co–Cr–Mo–Nb–Cu alloy for implant applications: Properties characterization, J. Alloys Compd., 2022, vol. 925, p. 166387. https://doi.org/10.1016/j.jallcom.2022.166387

    Article  CAS  Google Scholar 

  4. Ibrahim, M.Z., Sarhan, A.A.D., Yusuf, F., and Hamdi, M., Biomedical materials and techniques to improve the tribological, mechanical and biomedical properties of orthopedic implants—A review article, J. Alloys Compd., 2017, vol. 714, pp. 636–667. https://doi.org/10.1016/j.jallcom.2017.04.231

    Article  CAS  Google Scholar 

  5. Henriques, B., Gasik, M., Souza, J.C.M., Nascimento, R.M., Soares, D., and Silva, F.S., Mechanical and thermal properties of hot pressed CoCrMo-porcelain composites developed for prosthetic dentistry, J. Mech. Behav. Biomed. Mater., 2014, vol. 30, pp. 103–110. https://doi.org/10.1016/j.jmbbm.2013.10.023

    Article  CAS  Google Scholar 

  6. Vidal, C.V. and Muñoz, A.I., Effect of thermal treatment and applied potential on the electrochemical behaviour of CoCrMo biomedical alloy, Electrochim. Acta, 2009, vol. 54, no. 6, pp. 1798–1809. https://doi.org/10.1016/j.electacta.2008.10.018

    Article  CAS  Google Scholar 

  7. Vidal, C.V. and Munoz, A.I., Electrochemical characterisation of biomedical alloys for surgical implants in simulated body fluids, Corros. Sci., 2008, vol. 50, no. 7, pp. 1954–1961. https://doi.org/10.1016/j.corsci.2008.04.002

    Article  CAS  Google Scholar 

  8. Zhang, E. and Liu, C., A new antibacterial Co–Cr–Mo–Cu alloy: Preparation, biocorrosion, mechanical and antibacterial property, Mater. Sci. Eng., C, vol. 69, pp. 134–143. https://doi.org/10.1016/j.msec.2016.05.028

  9. Yamanaka, K., Mori, M., and Chiba, A., Mechanical properties of as-forged Ni-free Co–29Cr–6Mo alloys with ultrafinegrained microstructure, Mater. Sci. Eng., A, 2011, vol. 528, no. 18, pp. 5961–5966. https://doi.org/10.1016/j.msea.2011.04.027

    Article  CAS  Google Scholar 

  10. Yamanaka, K., Mori, M., Yoshida, K., Kuramoto, K., and Chiba, A., Manufacturing of high-strength Ni-free Co–Cr–Mo alloy rods via cold swaging, J. Mech. Behav. Biomed. Mater., 2016, vol. 60, pp. 38–47. https://doi.org/10.1016/j.jmbbm.2015.12.032

    Article  CAS  Google Scholar 

  11. Yamanaka, K., Mori, M., Yoshida, K., Balvay, S., Hartmann, D., Fabregue, D., and Chiba, A., Preparation of high-strength Co–Cr–Mo alloy rods via hot-caliber rolling, Materialia, 2020, vol. 12, p. 100729. https://doi.org/10.1016/j.mtla.2020.100729

    Article  CAS  Google Scholar 

  12. Makeev, D.B., Kozlova, O.N., Polulyakh, L.A., Petelin, A.L., Aleksandrov, A.A., and Dashevskii, V.Ya., Involvement of the domestic manganese ores in production, Russ. Metall., 2020, vol. 2020, no. 9, pp. 938–941. https://doi.org/10.1134/S0036029520090098

    Article  Google Scholar 

  13. Dashevskii, V.Ya., Makeev, D.B., Polulyakh, L.A., Aleksandrov, A.A., and Leont’ev, L.I., Dephosphorization of manganese-containing oxide melts, Dokl. Phys. Chem., 2017, vol. 473, pp. 55–57. https://doi.org/10.1134/S0012501617040017

    Article  CAS  Google Scholar 

  14. Polulyakh, L.A., Dashevskii, V.Ya., Travyanov, A.Ya., Yusfin, Yu.S., and Petelin, A.L., Behavior of phosphorus in blast furnace during smelting hot metal and ferromanganese, Izv. Vyssh. Uchebn. Zaved., Chern. Metall., 2009, vol. 52, no. 3, pp. 3–5.

    Google Scholar 

  15. Liao, Y., Pourzal, R., Stemmer, P., Wimmer, M.A., Jacobs, J.J., Fischer, A., and Marks, L.D., New insights into hard phases of CoCrMo metal-on-metal hip replacements, J. Mech. Behav. Biomed. Mater., 2012, vol. 12, pp. 39–49. https://doi.org/10.1016/j.jmbbm.2012.03.013

    Article  CAS  Google Scholar 

  16. Caudillo, M., Herrera-Trejo, M., Castro, M.R., Ramírez, E., González, C.R., and Juárez, J.I., On carbide dissolution in an as-cast ASTM F-75 alloy, J. Biomed. Mater. Res., 2002, vol. 59, no. 2, pp. 378–385. https://doi.org/10.1002/jbm.10001

    Article  CAS  Google Scholar 

  17. Kaiser, R., Williamson, K., O’Brien, C., Ramirez-Garcia, S., and Browne, D.J., The influence of cooling conditions on grain size, secondary phase precipitates and mechanical properties of biomedical alloy specimens produced by investment casting, J. Mech. Behav. Biomed. Mater., 2013, vol. 24, pp. 53–63. https://doi.org/10.1016/j.jmbbm.2013.04.013

    Article  CAS  Google Scholar 

  18. Yamanaka, K., Mori, M., and Chiba, A., Assessment of precipitation behavior in dental castings of a Co–Cr–Mo alloy, J. Mech. Behav. Biomed. Mater., 2015, vol. 50, pp. 268–276. https://doi.org/10.1016/j.jmbbm.2015.06.020

    Article  CAS  Google Scholar 

  19. Rosenthal, R., Cardoso, B.R., Bott, I.S., Paranhos, R.P.R., and Carvalho, E.A., Phase characterization in as-cast F-75 Co–Cr–Mo–C alloy, J. Mater. Sci., 2010, vol. 45, pp. 4021–4028. https://doi.org/10.1007/s10853-010-4480-x

    Article  CAS  Google Scholar 

  20. Chiba, A., Lee, S.-H., Matsumoto, H., and Nakamura, M., Construction of processing map for biomedical Co–28Cr–6Mo–0.16N alloy by studying its hot deformation behavior using compression tests, Mater. Sci. Eng., A, 2009, vols. 513–514, pp. 286–293. https://doi.org/10.1016/j.msea.2009.02.044

    Article  CAS  Google Scholar 

  21. Guo, S., Wu, S., Guo, J., Shen, Y., and Zhang, W., An investigation on the hot deformation behavior and processing maps of Co–Ni–Cr–W-based superalloy, J. Manuf. Processes, 2022, vol. 74, pp. 100–111. https://doi.org/10.1016/j.jmapro.2021.11.060

    Article  Google Scholar 

  22. Kartika, I., Li, Y., Matsumoto, H., and Chiba, A., Constructing processing maps for hot working of Co–Ni–Cr–Mo superalloy, Mater. Trans., 2009, vol. 50, no. 9, pp. 2277–2284. https://doi.org/10.2320/matertrans.M2009103

    Article  CAS  Google Scholar 

  23. Ghosh, S., Interpretation of microstructural evolution using dynamic materials modeling, Metall. Mater. Trans. A, 2000, vol. 31, pp. 2973–2974. https://doi.org/10.1007/BF02830342

    Article  Google Scholar 

  24. Ma, X., Zeng, W., Wang, K., Lai, Y., and Zhou, Y., The investigation on the unstable flow behavior of Ti17 alloy in α+β phase field using processing map, Mater. Sci. Eng., A, 2012, vol. 550, pp. 131–137. https://doi.org/10.1016/j.msea.2012.04.045

    Article  CAS  Google Scholar 

  25. Yamashita, Y., Li, Y., Onodera, E., Matsumoto, H., and Chiba, A., Dynamic recrystallization behavior of biomedical CCM alloy with additions of C and N, Mater. Trans., 2010, vol. 51, no. 9, pp. 1633–1639. https://doi.org/10.2320/matertrans.MAW201007

    Article  CAS  Google Scholar 

  26. Li, Y., Li, J., Koizumi, Y., and Chiba, A., Dynamic recrystallization behavior of biomedical Co–29Cr–6Mo–0.16N alloy, Mater. Charact., 2016, vol. 118, pp. 50–56. https://doi.org/10.1016/j.matchar.2016.05.004

    Article  CAS  Google Scholar 

  27. Prasad, Y.V.R.K., Rao, K.P., and Sasidhara, S., Hot Working Guide: A Compendium of Processing Maps, Ohio: ASM Int., 2015.

    Google Scholar 

  28. Prasad, Y.V.R.K. and Rao, K., Processing maps and rate controlling mechanisms of hot deformation of electrolytic tough pitch copper in the temperature range 300–950°C, Mater. Sci. Eng., A, 2005, vol. 391, nos. 1–2, pp. 141–150. https://doi.org/10.1016/j.msea.2004.08.049

    Article  CAS  Google Scholar 

  29. Evans, R.W. and Scharning, P.J., Axisymmetric compression test and hot working properties of alloys, Mater. Sci. Technol., 2001, vol. 17, no. 8, pp. 995–1004. https://doi.org/10.1179/026708301101510843

    Article  CAS  Google Scholar 

Download references

AUTHOR CONTRIBUTIONS

Y.V. Gamin formed the main concept, set the goal and objectives of the research, prepared the text, and formulated conclusions.

А.V. Korotitskii conducted calculations, tested the specimens, and prepared the text of the article.

Т.Yu. Kin carried out calculations and analyzed the research results.

S.P. Galkin conducted scientific supervision and corrected the text and conclusions.

S.A. Kostin prepared and supervised the experiment as well as provided the resources.

E.O. Tikhomirov carried out experiments and processed research results.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu. V. Gamin, A. V. Korotitskiy, T. Yu. Kin, S. P. Galkin, S. A. Kostin or E. O. Tikhomirov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Pismenov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gamin, Y.V., Korotitskiy, A.V., Kin, T.Y. et al. Development of Temperature-Rate Modes of Hot Deformation of the Co–28Cr–6Mo Alloy Based on Processing Maps. Steel Transl. 52, 1027–1036 (2022). https://doi.org/10.3103/S0967091222110079

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0967091222110079

Keywords:

Navigation