Skip to main content
Log in

Fatigue Fracture of Steel with a Ferrite-Martensite Composite Structure

  • Published:
Steel in Translation Aims and scope

Abstract

In this paper, we present results of fatigue tests of a natural steel composite material for cyclic bending by a zero-loading cycle. Natural ferrite-martensitic composite (NFMC) has a structure of alternating layers of ductile ferrite and strong martensite, which causes a special mechanism of crack retardation under loading. The zero-loading cycle assumes the presence of tensile forces directed only in one direction, which makes it possible to avoid hardening of the crack edges during its growth. Using the obtained data on the kinetics of the development of a fatigue crack and the rate of its growth, a diagram of fatigue failure was constructed depending on the number of vibration cycles. Test results of samples from steel of one chemical composition are compared. In one case, a traditional heat treatment was carried out on the structure of tempering sorbitol. In the other case, a layered structure of the ferrite-martensite composite was obtained by quenching the initial line ferrite-pearlite structure from the intercritical temperature range. These materials had the same hardness, but the difference in structural organization determined the advantage of steel with the NFMC structure in terms of fracture resistance under cyclic loading. When a crack approaches the martensite-ferrite interface, delamination occurs in the ferrite due to tensile stresses parallel to the crack plane. The crack growth stops until additional energy for the formation of a new crack under conditions close to the uniaxial stress state is supplied. A technique for determining the characteristics of crack growth kinetics under fatigue loading, which is recommended for testing steels and alloys under conditions of cyclic load changes, is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Pustovoit, V.N., Dombrovskii, Yu.M., Zheleva, A.V., and Zaitseva, M.V., Method of natural ferrite-martensite composite obtaining, RF Patent 2495141, 2013.

  2. Pustovoit, V.N., Dolgachev, Yu.V., Dombrovskii, Yu.M., and Duka, V.V., Structural organization and properties of a natural ferrite-martensite steel composite, Met. Sci. Heat Treat., 2020, vol. 62, nos. 5–6, pp. 369–375.  https://doi.org/10.1007/s11041-020-00570-9

    Article  CAS  Google Scholar 

  3. Cadoni, E., Singh, N.K., Forni, D., Singha, M.K., and Gupta, N.K., Strain rate effects on the mechanical behavior of two dual phase steels in tension, Eur. Phys. J.: Spec. Top., 2016, vol. 225, no. 2, pp. 409–421.  https://doi.org/10.1140/epjst/e2016-02638-3

    Article  CAS  Google Scholar 

  4. Luo, M. and Wierzbicki, T., Numerical failure analysis of a stretch-bending test on dual-phase steel sheets using a phenomenological fracture model, Int. J. Solids Struct., 2010, vol. 47, nos. 22–23, pp. 3084–3102.  https://doi.org/10.1016/j.ijsolstr.2010.07.010%20

    Article  CAS  Google Scholar 

  5. Kim, J.H., Sung, J.H., Piao, K., and Wagoner, R.H., The shear fracture of dual-phase steel, Int. J. Plast., 2011, vol. 27, no. 10, pp. 1658–1676.  https://doi.org/10.1016/j.ijplas.2011.02.009

    Article  CAS  Google Scholar 

  6. Dykeman, J., Hoydick, D., Link, T., and Mitsuji, H., Material property and formability characterization of various types of high strength dual phase steel, SAE Tech. Paper, 2009, vol. 1, pp. 794–804.  https://doi.org/10.4271/2009-01-0794

  7. Soboyejo, W., Mechanical Properties of Engineered Materials, New York: CRC Press, 2002.

    Book  Google Scholar 

  8. Pustovoit, V.N., Grishin, S.A., Duka, V.V., and Fedo-sov, V.V., Setup for studying the kinetics of crack growth in cyclic bending tests, Zavod. Lab. Diagnost. Mater., 2020, vol. 86, no. 7, pp. 59–64.  https://doi.org/10.26896/1028-6861-2020-86-7-59-64

    Article  Google Scholar 

  9. Pustovoit, V.N. and Grishin, S.A., Special features of fracture of carbon steel with a structure of laminar ferrite–carbide mixture, Met. Sci. Heat Treat., 1987, vol. 29, nos. 3–4, pp. 262–266.  https://doi.org/10.1007/BF00769424

    Article  Google Scholar 

  10. Nicholas, T., High Cycle Fatigue: A Mechanics of Materials Perspective, Elsevier, 2006.

    Google Scholar 

  11. Miklyaev, P.G., Neshpor, G.S., and Kudryashov, V.G., Kinetika razrusheniya (Kinetics of Destruction), Moscow: Metallurgiya, 1979.

  12. Cooper, G.A. and Kelly, A., Tensile properties of fibre-reinforced metals: fracture mechanics, J. Mech. Phys. Solids, 1967, vol. 15, no. 4, pp. 279–297.  https://doi.org/10.1016/0022-5096(67)90017-8

    Article  CAS  Google Scholar 

  13. Greif, R. and Sanders, J.L., The effect of a stringer on the stress in a cracked sheet, J. Appl. Mech., 1965, vol. 32, no. 1, pp. 59–66.  https://doi.org/10.1115/1.3625784

    Article  Google Scholar 

  14. Bloom, J.M. and Sanders, J.L., The effect of a riveted stringer on the stress in a cracked sheet, J. Appl. Mech., 1966, vol. 33, no. 3, pp. 561–570.  https://doi.org/10.1115/1.3625122

    Article  Google Scholar 

  15. Sanders, J.L., Effect of a stringer on the stress concentration due to a crack in a thin sheet, Nat. Advisory Committee Aeronaut., 1959, no. 4207, p. 10.

  16. Poe, J.C.C., Stress Intensity Factor for a Cracked Sheet with Riveted and Uniformly Spaced Stringers, NASA Technical Report TR R-358, Washington, DC: NASA, 1971.

  17. Pustovoit, V.N., Duka, V.V., and Dolgachev, Yu.V., Scenario of crack growth in steel with a ferrite-martensite composite structure, Izv. Volgograd. Gos. Tekh. Univ., 2017, no. 10, pp. 118–121.

  18. Pustovoit, V.N., Duka, V.V., Dolgachev, Y.V., Aref’eva, L.P., Fedosov, V.V., and Salynskih, V.M., Features of destruction of a ferrite-martensitic composite, MATEC Web Conf., 2018, vol. 226, p. 03006.  https://doi.org/10.1051/matecconf/201822603006

  19. Irwin G.R., Paris P.C. Fundamental aspects of crack growth and fracture, Engineering Fundamentals and Environmental Effects, New York: Academic Press, 1971. P. 1–46.

    Google Scholar 

  20. Pugno, N., Ciavarella, M., Cornetti, P., and Carpinteri, A., A generalized Paris’ law for fatigue crack growth, J. Mech. Phys. Solids, 2006, vol. 54, no. 7, pp. 1333–1349.  https://doi.org/10.1016/j.jmps.2006.01.007

    Article  CAS  Google Scholar 

  21. Jones, R., Molent, L., and Pitt, S., Similitude and the Paris crack growth law, Int. J. Fatigue, 2008, vol. 30, nos. 10–11, pp. 1873–1880.  https://doi.org/10.1016/j.ijfatigue.2008.01.016

    Article  CAS  Google Scholar 

  22. Turner, C.E., Paris, P.C., and Erns, H., On the relationship between work and crack tip stress intensity in elasticity and plasticity, Int. J. Fract., 1981, vol. 17, no. 6, pp. R151–R154.  https://doi.org/10.1007/BF00681560

    Article  Google Scholar 

  23. Paris, P. and Erdogan, F., A critical analysis of crack propagation laws, J. Fluids Eng., 1963, vol. 85, no. 4, pp. 528–533. https://doi.org/10.1115/1.3656900

    Article  CAS  Google Scholar 

  24. Panasyuk, V.V., Ostash, O.P., Kostyk, E.M., Kudryashov, V.G., and Neshpor, G.S., Cyclic crack resistance of aluminum alloys in the crack origin and growth stages, Soviet Mater. Sci., 1987, vol. 23, no. 5, pp. 473–479.  https://doi.org/10.1007/BF01148672

    Article  Google Scholar 

  25. Den Hartog, J.P., Advanced Strength of Materials, New York: Courier Corporation, 1987.

    Google Scholar 

  26. Ross, C.T.F. and Chilver, A., Strength of Materials and Structures, Oxford: Elsevier, 1999.

    Google Scholar 

  27. Mott, R.L. and Untener, J.A., Applied Strength of Materials, Boca Raton, Fla.: CRC Press, 2008.

    Google Scholar 

  28. Da Silva, V.D., Mechanics and Strength of Materials, New York: Springer, 2005.

    Google Scholar 

  29. Stephens, R.C., Strength of Materials: Theory and Examples, London: Elsevier, 2013.

    Google Scholar 

  30. Belyayev, N.M., Problems in Strength of Materials, Oxford: Elsevier, 2016.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. N. Pustovoit, S. A. Grishin, Yu. V. Dolgachev or V. V. Duka.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Ivanov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pustovoit, V.N., Grishin, S.A., Dolgachev, Y.V. et al. Fatigue Fracture of Steel with a Ferrite-Martensite Composite Structure. Steel Transl. 52, 140–144 (2022). https://doi.org/10.3103/S0967091222020206

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0967091222020206

Keywords:

Navigation