Skip to main content
Log in

High Entropy Alloys: Structure, Mechanical Properties, Deformation Mechanisms and Applications

  • Published:
Steel in Translation Aims and scope

Abstract

A brief review of publications by foreign researchers on the study of the structure, phase composition and properties of five-component high-entropy alloys (HEAs) in different structural states in a wide temperature range over the past two decades has been made. HEAs attract the attention of scientists with their unique and unusual properties. Difficulties in conducting a comparative analysis and summarizing data due to different methods for obtaining HEAs, modes of mechanical tests for uniaxial compression and tension, sample sizes and shapes, types of heat treatments, and phase composition (BCC and FCC lattices) are noted. It is noted that HEAs with the BCC lattice have predominantly high strength and low ductility, while HEAs with the FCC lattice have low strength and increased ductility. It is shown that a significant increase in the properties of HEA FeMnCoCrNi with the FCC lattice can be achieved by doping with boron and optimizing the parameters of thermomechanical treatment when doping with carbon in an amount of 1% (at %). The deformation curves analyzed in the temperature range of –196…800°C indicate an increase in the yield strength with a decrease in the grain size from 150 to 5 μm. As the temperature decreases, the yield strength and relative elongation increase. The effect of the deformation rate on the mechanical properties consists in an increase in the tensile strength and yield strength, which is most noticeable at high rates of 10–2–103 s–1. The features of the deformation behavior of HEAs in single- and polycrystalline states are noted. The complex of high operational properties of HEAs provides the possibility of their application in various industries. The prospects for using energy treatments to modify surface layers and further improve the HEAs properties are noted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Yeh, J.W., Chen, S.K., Lin, S.J., Gan, J.Y., Chin, T.S., Shun, T.T., Tsau, C.H., and Chang, S.Y., Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes, Adv. Eng. Mater., 2004, vol. 6, no. 5, pp. 299–303.  https://doi.org/10.1002/adem.200300567

    Article  CAS  Google Scholar 

  2. Zhang, Y., Yang, X., and Liaw, P.K., Alloy design and properties optimization of high-entropy alloys, JOM, 2012, vol. 64, no. 7, pp. 830–838.  https://doi.org/10.1007/s11837-012-0366-5

    Article  CAS  Google Scholar 

  3. Yeh, J.W., Recent progress in high-entropy alloys, Ann. Chim. Sci. Mater., 2006, vol. 31, no. 6, pp. 633–648.  https://doi.org/10.3166/acsm.31.633-648

    Article  CAS  Google Scholar 

  4. Yeh, J.W., Alloy design strategies and future trends in high-entropy alloys, JOM, 2013, vol. 65, no. 12, pp. 1759–1771.  https://doi.org/10.1007/s11837-013-0761-6

    Article  CAS  Google Scholar 

  5. Zhang, L.S., Ma, G.-L., Fu, L.-C., and Tian, J.-Y., Recent progress in high-entropy alloys, Adv. Mater. Res., 2013, vols. 631–632, pp. 227–232. https://doi.org/10.4028/www.scientific.net/AMR.631-632.227

  6. Zhang, Y., Zuo, T.T., Tang, Z., Gao, M.C., Dahmen, K.A., Liaw, P.K., and Lu, Z.P., Microstructures and properties of high-entropy alloys, Progr. Mater. Sci., 2014, vol. 61, pp. 1–93.  https://doi.org/10.1016/j.pmatsci.2013.10.001

    Article  CAS  Google Scholar 

  7. Gali, A. and George, E.P., Tensile properties of high- and medium-entropy alloys, Intermetallics, 2013, vol. 39, pp. 74–78.  https://doi.org/10.1016/j.intermet.2013.03.018

    Article  CAS  Google Scholar 

  8. Cantor, B., Chang, I.T.H., Knight, P., and Vincent, A.J.B., Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng., A, 2004, vol. 375–377, pp. 213–218.  https://doi.org/10.1016/j.msea.2003.10.257

    Article  CAS  Google Scholar 

  9. Jiang, L., Lu, Y., Dong, Y., Wang, T., Cao, Z., and Li, T., Annealing effects on the microstructure and properties of bulk high-entropy CoCrFeNiTi0.5 alloy casting ingot, Intermetallics, 2014, vol. 44, pp. 37–43.  https://doi.org/10.1016/j.intermet.2013.08.016

    Article  CAS  Google Scholar 

  10. Shun, T.-T., Chang, L.-Y., and Shiu, M.-H., Microstructure and mechanical properties of multiprincipal component CoCrFeNiMox alloys, Mater. Charact., 2012, vol. 70, pp. 63–67.  https://doi.org/10.1016/j.matchar.2012.05.005

    Article  CAS  Google Scholar 

  11. Senkov, O.N. and Miracle, D.B., A topological model for metallic glass formation, J. Non-Cryst. Solids, 2003, vol. 317, nos. 1–2, pp. 34–39.  https://doi.org/10.1016/S0022-3093(02)01980-4

    Article  CAS  Google Scholar 

  12. Takeuchi, A., Chen, N., Wada, T., Yokoyama, Y., Kato, H., Inoue, A., and Yeh, J.W., Pd20Pt20Cu20Ni20P20 high-entropy alloy as a bulk metallic glass in the centimeter, Intermetallics, 2011, vol. 19, no. 10, pp. 1546–1554.  https://doi.org/10.1016/j.intermet.2011.05.030

    Article  CAS  Google Scholar 

  13. Singh, S., Wanderka, N., Murty, B.S., Glatzel, U., and Banhart, J., Decomposition in multi-component AlCoCrCuFeNi high-entropy alloy, Acta Mater., 2011, vol. 59, no. 1, pp. 182–190.  https://doi.org/10.1016/j.actamat.2010.09.023

    Article  CAS  Google Scholar 

  14. George, E.P., Curtin, W.A., and Tasan, C.C., High entropy alloys: A focused review of mechanical properties and deformation mechanisms, Acta Mater., 2020, vol. 188, pp. 435–474.  https://doi.org/10.1016/j.actamat.2019.12.015

    Article  CAS  Google Scholar 

  15. Miracle, D.B. and Senkov, O.N., A critical review of high entropy alloys and related concepts, Acta Mater., 2017, vol. 122, pp. 448–511.  https://doi.org/10.1016/j.actamat.2016.08.081

    Article  CAS  Google Scholar 

  16. Raghavan, R., Kirchlechner, C., Jaya, B.N., Feuerbacher, M., and Dehm, G., Mechanical size effects in a single crystalline equiatomic FeCrCoMnNi high entropy alloy, Scr. Mater., 2017, vol. 129, pp. 52–55.  https://doi.org/10.1016/j.scriptamat.2016.10.026

    Article  CAS  Google Scholar 

  17. Zhou, Y.J., Zhang, Y., Wang, Y.L., and Chen, G.L., Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties, Appl. Phys. Lett., 2007, vol. 90, p. 181904.  https://doi.org/10.1063/1.2734517

    Article  CAS  Google Scholar 

  18. Qiao, J.W., Ma, S.G., Huang, E.W., Chuang, C.P., Liaw, P.K., and Zhang, Y., Microstructural characteristics and mechanical behaviors of AlCoCrFeNi high-entropy alloys at ambient and cryogenic temperature, Mater. Sci. Forum, 2011, vol. 688, pp. 419–425. https://doi.org/10.4028/www.scientific.net/MSF.688.419

  19. Gludovatz, B., Hohenwarter, A., Catoor, D., Chang, E.H., George, E.P., and Ritchie, R.O., A fracture-resistant high-entropy alloy for cryogenic applications, Science, 2014, vol. 345, no. 6201, pp. 1153–1158.  https://doi.org/10.1126/science.1254581

    Article  CAS  Google Scholar 

  20. Seol, J.B., Bae, J.W., Li, Z., Han, J.Ch., Kim, J.G., Raabe, D., and Kim, H.S., Boron doped ultrastrong and ductile high-entropy alloys, Acta Mater., 2018, vol. 151, pp. 366–376.  https://doi.org/10.1016/j.actamat.2018.04.004

    Article  CAS  Google Scholar 

  21. Slone, C.E., Chakraborty, S., Miao, J., George, E.P., Mills, M.J., and Niezgoda, S.R., Influence of deformation induced nanoscale twinning and FCC-HCP transformation on hardening and texture development in medium-entropy CrCoNi alloy, Acta Mater., 2018, vol. 158, pp. 38–52.  https://doi.org/10.1016/j.actamat.2018.07.028

    Article  CAS  Google Scholar 

  22. Wu, Z., Bei, H., Pharr, G.M., and George, E.P., Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures, Acta Mater., 2014, vol. 81, pp. 428–441.  https://doi.org/10.1016/j.actamat.2014.08.026

    Article  CAS  Google Scholar 

  23. Otto, F., Dlouhy, A., Somsen, C., Bei, H., Eggeler, G., and George, E.P., The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy, Acta Mater., 2013, vol. 61, no. 15, pp. 5743–5755.  https://doi.org/10.1016/j.actamat.2013.06.018

    Article  CAS  Google Scholar 

  24. Wingley, D.A., Mechanical properties of materials at low temperatures, Cryogenics, 1968, vol. 8, no. 1, pp. 3–12.  https://doi.org/10.1016/S0011-2275(68)80042-6

    Article  Google Scholar 

  25. Yeh, J.W., Physical metallurgy of high-entropy alloys, JOM, 2015, vol. 67, no. 10, pp. 2254–226.  https://doi.org/10.1007/s11837-015-1583-5

    Article  CAS  Google Scholar 

  26. Okamoto, N.L., Fujimoto, S., Kambara, Y., Kawamura, M., Zhenghao, M.T.C., Matsunoshita, H., Tanaka, K., Inui, H., and George, E.P., Size effect, critical resolved shear stress, stacking fault energy, and solid solution strengthening in the CrMnFeCoNi high-entropy alloy, Sci. Rep., 2016, vol. 6, p. 35863.  https://doi.org/10.1038/srep35863

    Article  CAS  Google Scholar 

  27. Patriarca, L., Ojha, A., Sehitoglu, H., and Chumlyakov, Y.I., Slip nucleation in single crystal FeNiCoCrMn high entropy alloy, Scr. Mater., 2016, vol. 112, pp. 54–57.  https://doi.org/10.1016/j.scriptamat.2015.09.009

    Article  CAS  Google Scholar 

  28. Kireeva, I.V., Chumlyakov, Yu.I., Pobedennaya, Z.V., Kuksgausen, I.V., and Karaman, I., Orientation dependence of twinning in single crystalline CoCrFeMnNi high-entropy alloy, Mater. Sci. Eng., A, 2017, vol. 705, pp. 176–181.  https://doi.org/10.1016/j.msea.2017.08.065

    Article  CAS  Google Scholar 

  29. Wu, Z., Gao, Y.F., and Bei, H., Single crystal plastic behavior of a single-phase, face-center-cubic-structured, equiatomic FeNiCrCo alloy, Scr. Mater., 2015, vol. 109, pp. 108–112.  https://doi.org/10.1016/j.scriptamat.2015.07.031

    Article  CAS  Google Scholar 

  30. Park, J.M., Moon, J., Bae, J.W., Jang, M.J., Park, J., Lee, S., and Kim, H.S., Strain rate effects of dynamic compressive deformation on mechanical properties and microstructure of CoCrFeMnNi high-entropy alloy, Mater. Sci. Eng., A, 2018, vol. 719, pp. 155–163.  https://doi.org/10.1016/j.msea.2018.02.031

    Article  CAS  Google Scholar 

  31. Zhang, Z., Sheng, H., Wang, Z., Gludovatz, B., Zhang, Z., George, E.P., Yu, Q., Mao, S.X., and Ritchie, R.O., Dislocation mechanisms and 3D twin architectures generate exceptional strength-ductility-toughness combination in CrCoNi medium-entropy alloy, Nat. Commun., 2017, vol. 8, no. 1, p. 14390.  https://doi.org/10.1038/ncomms14390

    Article  CAS  Google Scholar 

  32. Laplanche, G., Kostka, A., Horst, O.M., Eggeler, G., and George, E.P., Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy, Acta Mater., 2016, vol. 118, pp. 152–163.  https://doi.org/10.1016/j.actamat.2016.07.038

    Article  CAS  Google Scholar 

  33. Varvenne, C., Luque, A., and Curtin, W.A., Theory of strengthening in fcc high entropy alloys, Acta Mater., 2016, vol. 118, pp. 164–176.  https://doi.org/10.1016/j.actamat.2016.07.040

    Article  CAS  Google Scholar 

  34. Shaysultanov, D.G., Salishchev, G.A., Ivanisenko, Yu.V., Zherebtsov, S.V., Tikhonovsky, M.A., and Stepanov, N.D., Novel Fe36Mn21Cr18Ni15Al10 high entropy alloy with bcc/B2 dual-phase structure, J. Alloys Compd., 2017, vol. 705, pp. 756–763.  https://doi.org/10.1016/j.jallcom.2017.02.211

    Article  CAS  Google Scholar 

  35. Meyers, M.A., Vohringer, O., and Lubarda, V.A., The onset of twinning in metals: A constitutive description, Acta Mater., 2001, vol. 49, no. 19, pp. 4025–4039.  https://doi.org/10.1016/S1359-6454(01)00300-7

    Article  CAS  Google Scholar 

  36. Zhu, Y.T., Liao, X.Z., and Wu, X.L., Deformation twinning in nanocrystalline materials, Progr. Mater. Sci., 2012, vol. 57, no. 1, pp. 1–62.  https://doi.org/10.1016/j.pmatsci.2011.05.001

    Article  CAS  Google Scholar 

  37. Senkov, O.N. and Semiatin, S.L., Microstructure and properties of a refractory high-entropy alloy after cold working, J. Alloys Compd., 2015, vol. 649, pp. 1110–1123.  https://doi.org/10.1016/j.jallcom.2015.07.209

    Article  CAS  Google Scholar 

  38. Chien-Chang, J., Ko-Kai, T., Wei-Lin, H., Ming-Hung, T., Che-Wei, T., Chun-Ming, L., Swe-Kai, C., Su-Jien, L., and Jien-Wei, Y., Solution strengthening of ductile refractory HfMoxNbTaTiZr high-entropy alloys, Mater. Lett., 2016, vol. 175, pp. 284–287.  https://doi.org/10.1016/j.matlet.2016.03.133

    Article  CAS  Google Scholar 

  39. Zamora, R.J., Uberuaga, B.P., Perez, D., and Voter, A.F., The modern temperature-accelerated dynamics approach, Ann. Rev. Chem. Biomol. Eng., 2016, vol. 7, pp. 87–110.  https://doi.org/10.1146/annurev-chembioeng-080615-033608

    Article  Google Scholar 

  40. Perez, D., Uberuaga, B.P., and Voter, A.F., The parallel replica dynamics method—Coming of age, Comput. Mater. Sci., 2015, vol. 100, pp. 90–103.  https://doi.org/10.1016/j.commatsci.2014.12.011

    Article  CAS  Google Scholar 

  41. Egami, T., Guo, W., Rack, P.D., and Nagase, T., Irradiation resistance of multicomponent alloys, Metall. Mater. Trans. A, 2014, vol. 45, pp. 180–183.  https://doi.org/10.1007/s11661-013-1994-2

    Article  CAS  Google Scholar 

  42. Kunce, I., Polanski, M., and Bystrzycki, J., Structure and hydrogen storage properties of a high entropy ZrTiVCrFeNi alloy synthesized using Laser Engineered Net Shaping (LENS), Int. J. Hydrogen Energy, 2013, vol. 38, no. 27, pp. 12180–12189.  https://doi.org/10.1016/j.ijhydene.2013.05.071

    Article  CAS  Google Scholar 

  43. Kao, Y.F., Chen, S.K., Sheu, J.H., Lin, J.T., Lin, W.E., Yeh, J.W., Lin, S.J., Lion, T.H., and Wang, C.W., Hydrogen storage properties of multi-principal-component CoFeMnTixVyZrz alloys, Int. J. Hydrogen Energy, 2010, vol. 35, no. 17, pp. 9046–9059.  https://doi.org/10.1016/j.ijhydene.2010.06.012

    Article  CAS  Google Scholar 

  44. Firstov, S.A., Gorban’, V.F., Danilenko, N.I., Karpets, M.V., Andreev, A.A., and Makarenko, E.S., Thermal stability of superhard nitride coatings from high-entropy multicomponent Ti–V–Zr–Nb–Hf alloy, Powder Metall. Met. Ceram., 2014, vol. 52, pp. 560–566.  https://doi.org/10.1007/s11106-014-9560-z

    Article  CAS  Google Scholar 

  45. Pogrebnjak, A.D., Bagdasaryan, A.A., Yakushchenko, I.V., and Beresnev, V.M., The structure and properties of high-entropy alloys and nitride coatings based on them, Russ. Chem. Rev., 2014, vol. 83, pp. 1027–1061.  https://doi.org/10.1070/RCR4407

    Article  CAS  Google Scholar 

  46. Zaguliaev, D., Gromov, V., Rubannikova, Y., Konovalov, S., Ivanov, Y., Romanov, D., and Semin, A., Structure and phase states modification of AL-11SI-2CU alloy processed by ion-plasma jet and pulsed electron beam, Surf. Coat. Technol., 2020, vol. 383, p. 125246.  https://doi.org/10.1016/j.surfcoat.2019.125246

    Article  CAS  Google Scholar 

  47. Zhang, C., Lv, P., Xia, H., Yang, Z., Konovalov, S., Chen, X., and Guan, Q., The microstructure and properties of nanostructured Cr–Al alloying layer fabricated by high-current pulsed electron beam, Vacuum, 2019, vol. 167, pp. 263–270.  https://doi.org/10.1016/j.vacuum.2019.06.022

    Article  CAS  Google Scholar 

  48. Konovalov, S.V., Komissarova, I.A., Ivanov, Yu.F., Gromov, V.E., and Kosinov, D.E., Structural and phase changes under electropulse treatment of fatigue-loaded titanium alloy VT1-0, J. Mater. Res. Technol., 2019, vol. 8, no. 1, pp. 1300–1307.  https://doi.org/10.1016/j.jmrt.2018.09.008

    Article  CAS  Google Scholar 

  49. Konovalov, S., Ivanov, Y., Gromov, V., and Panchenko, I., Fatigue-induced evolution of AISI 310S steel microstructure after electron beam treatment, Materials, 2020, vol. 13, no. 20, p. 4567.  https://doi.org/10.3390/ma13204567

    Article  CAS  Google Scholar 

  50. Romanov, D., Moskovskii, S., Konovalov, S., Sosnin, K., Gromov, V., and Ivanov, Y., Improvement of copper alloy properties in electro-explosive spraying of ZnO–Ag coatings resistant to electrical erosion, J. Mater. Res. Technol., 2019, vol. 8, no. 6, pp. 5515–5523.  https://doi.org/10.1016/j.jmrt.2019.09.019

    Article  CAS  Google Scholar 

Download references

Funding

This work was carried out with the support by a grant from Russian Science Foundation (project 20-19-00452).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. A. Osintsev, V. E. Gromov, S. V. Konovalov, Yu. F. Ivanov or I. A. Panchenko.

Additional information

Translated by A. Kolemesin

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osintsev, K.A., Gromov, V.E., Konovalov, S.V. et al. High Entropy Alloys: Structure, Mechanical Properties, Deformation Mechanisms and Applications. Steel Transl. 52, 167–173 (2022). https://doi.org/10.3103/S0967091222020176

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0967091222020176

Keywords:

Navigation