Skip to main content
Log in

Modeling of Healing Cylindrical Cavities Exposed to Shock Waves in Crystal Subjected to Shear Deformation

  • Published:
Steel in Translation Aims and scope

Abstract—

Bulk defects in crystals downgrade performance properties of structural materials. Therefore, the problem of reducing the number of discontinuities in solid bodies is one of the most important aspects in modern material science. In this work, the results of computer simulation are presented that showcase the possibility of cavity collapse in a crystal in the state of shear deformation under the influence of shock waves. Similar waves are generated in a solid body exposed to external high-intensity influences. For example, in the displacement cascade propagation zone, there are regions with a mismatch between the thermalization times of atomic vibrations and the removal of heat from them. As a result of the expansion of this region, a shock after cascade wave is generated. The simulation was carried out by the molecular dynamics method using the potential calculated by the embedded atom method. Extended cylindrical cavities, which can be formed after the passing of high-energy ions through a crystal, or, for example, when superheated closed fluid inclusions (mother liquor) reach the surface, are considered as bulk defects. The study has shown that such defects are the source of heterogeneous nucleation of dislocation loops, contributing to a reduction in the shear stresses in the modeled structure. Dependences of the average dislocation density on the shear angle and temperature of the design cell were established, and the loop growth rate was estimated. The generated shock waves create additional tangential stresses that contribute to the formation of dislocation loops; therefore, in this case, dislocations are observed even at small shear strains. If the thermal effect increases during the modeling, the cavity collapses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Betekhtin, V.I., Porosity and mechanical properties of solids, Vestn. Tomskogo Gos. Univ., 1998, vol. 3, no. 3, pp. 209–210.

    Google Scholar 

  2. Ovchinnikov, V.V., Radiationdynamic effects. Potential for producing condensed media with unique properties and structural states, Phys.-Usp., 2008, vol. 51, no. 9, pp. 955–964.  https://doi.org/10.1070/PU2008v051n09ABEH006609

    Article  Google Scholar 

  3. Calder, A.F., Bacon, D.J., Barashev, A.V., and Osetsky, Yu.N., On the origin of large interstitial clusters in displacement cascades, Philos. Mag., 2010, vol. 90, nos. 7–8, pp. 863–884.  https://doi.org/10.1080/14786430903117141

    Article  CAS  Google Scholar 

  4. Krivtsov, A.M., Molecular dynamics simulation of plastic effects upon spalling, Phys. Solid State, 2004, vol. 46, no. 6, pp. 1055–1060.  https://doi.org/10.1134/1.1767244

    Article  CAS  Google Scholar 

  5. Zol’nikov, K.P., Korchuganov, A.V., Kryzhevich, D.S., Chernov, V.M., and Psakh’e, S.G., Shock waves in metal crystallites under radiation exposure, Vopr. Atomnoi Nauki Tekh. Ser. Termoyadernyi Sintez, 2015, vol. 38, no. 2, pp. 68–74.

    Google Scholar 

  6. Markidonov, A.V., Starostenkov, M.D., Pavlovskaya, E.P., Yashin, A.V., and Poletaev, G.M., Low-temperature dissolution of a pore near the crystal surface under the influence of shock waves, Fundam. Probl. Sovrem. Materialoved., 2013, vol. 10, no. 2, pp. 254–260.

    Google Scholar 

  7. Markidonov, A.V., Starostenkov, M.D., Pavlovskaya, E.P., Yashin, A.V., Medvedev, N.N., and Zakharov, P.V., Structural transformation of vacancy pores in a deformed crystal under the action of shock waves, Fundam. Probl. Sovrem. Materialoved., 2013, vol. 10, no. 4, pp. 563–571.

    Google Scholar 

  8. Markidonov, A.V., Starostenkov, M.D., Zakharov, P.V., and Obidina, O.V., Pore formation in an FCC crystal under the action of post-cascade shock waves, Fundam. Probl. Sovrem. Materialoved., 2015, vol. 12, no. 2, pp. 231–240.

    Google Scholar 

  9. Markidonov, A.V., Starostenkov, M.D., and Poletaev, G.M., Transformation of nanopores in gold under conditions of thermal activation and exposure to sound and shock waves, Bull. Russ. Acad. Sci.: Phys., 2015, vol. 79, no. 9, pp. 1089–1092.  https://doi.org/10.3103/S1062873815090130

    Article  CAS  Google Scholar 

  10. Markidonov, A.V., Starostenkov, M.D., Zakharov, P.V., Lubyanoi, D.A., and Lipunov, V.N., Emission of dislocation loops from nanovoids in an FCC crystal subjected to shear deformation under post-cascade shock waves, J. Exp. Theor. Phys., 2019, vol. 129, pp. 985–989. https://doi.org/10.1134/S106377611911013X

    Article  CAS  Google Scholar 

  11. Barbu, A., Dunlop, A., Lesueur, D., and Averback, R.S., Latent tracks do exist in metallic materials, Europhys. Lett., 1991, vol. 15, no. 1, pp. 37–42.  https://doi.org/10.1209/0295-5075/15/1/007

    Article  CAS  Google Scholar 

  12. Prokof’ev, M.A., Berdonosova, D.G., Melikhov, I.V., and Berdonosov, S.S., On the possibility of obtaining crystalline materials containing extended cylindrical pores, Moscow Univ. Chem. Bull., 2010, vol. 65, no. 4, pp. 269–273.  https://doi.org/10.3103/S0027131410040115

    Article  Google Scholar 

  13. Foiles, S.M., Baskes, M.I., and Daw, M.S., Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys, Phys. Rev. B, 1986, vol. 33, no. 12, pp. 7983–7991.  https://doi.org/10.1103/PhysRevB.33.7983

    Article  CAS  Google Scholar 

  14. XMD—Molecular dynamics for metals and ceramics. http://xmd.sourceforge.net/about.html. Cited January 30, 2020.

  15. Stukowski, A., Visualization and analysis of atomistic simulation data with OVITO—The Open Visualization Tool, Mod. Simul. Mater. Sci. Eng., 2010, vol. 18, p. 015012.  https://doi.org/10.1088/0965-0393/18/1/015012

    Article  Google Scholar 

  16. Andersen, H.C., Molecular dynamics simulations at constant pressure and/or temperature, J. Chem. Phys., 1980, vol. 72, no. 4, pp. 2384–2393. https://doi.org/10.1063/1.439486

    Article  CAS  Google Scholar 

  17. Stukowski, A. and Albe, K., Extracting dislocations and non-dislocation crystal defects from atomistic simulation data, Mod. Simul. Mater. Sci. Eng., 2010, vol. 18, no. 8, p. 085001. https://doi.org/10.1088/0965-0393/18/8/085001

    Article  CAS  Google Scholar 

  18. Stukowski, A., Bulatov, V.V., and Arsenlis, A., Automated identification and indexing of dislocations in crystal interfaces, Mod. Simul. Mater. Sci. Eng., 2012, vol. 20, no. 8, p. 085007. https://doi.org/10.1088/0965-0393/20/8/085007

    Article  Google Scholar 

  19. Stukowski, A., Computational analysis methods in atomistic modeling of crystals, JOM, 2014, vol. 66, no. 3, pp. 399–407.  https://doi.org/10.1007/s11837-013-0827-5

    Article  CAS  Google Scholar 

  20. Norman, G.E. and Yanilkin, A.V., Homogeneous nucleation of dislocations, Phys. Solid State, 2011, vol. 53, no. 8, pp. 1614–1619. https://doi.org/10.1134/S1063783411080221

    Article  CAS  Google Scholar 

  21. Xue, L., Constitutive modeling of void shearing effect in ductile fracture of porous materials, Eng. Fract. Mech., 2008, vol. 75, no. 11, pp. 3343–3366.  https://doi.org/10.1016/j.engfracmech.2007.07.022

    Article  Google Scholar 

  22. Kozlov, E.V., Trishkina, L.I., and Koneva, N.A., Scalar dislocation density and its components accumulated during deformation in low-concentration Cu–Al solid solutions, Fundam. Probl. Sovrem. Materialoved., 2011, vol. 8, no. 1, pp. 52–60.

    Google Scholar 

  23. Skuratov, V.A., Saifulin, M.M., Aralbaeva, G.M., O’Connell, J.H., and van Vuuren, A.J., Damage of titanium dioxide near the surface after irradiation with fast heavy ions, Vestn. Karagandinskogo Univ. Fiz., 2017, no. 1, pp. 47–54.

  24. Zhilyaev, P.A., Kuksin, A.Yu., Norman, G.E., Starikov, S.V., Stegailov, V.V., and Yanilkin, A.V., Influence of material microstructure on dynamic plasticity and strength: Molecular dynamics modelling, Fiz.-Khim. Kinetika Gaz. Din., 2010, vol. 9, no. 1, pp. 104–109.

    Google Scholar 

  25. Kositski, R., Steinberger, D., Sandfeld, S., and Mordehai, D., Shear relaxation behind the shock front in ❬110❭ molybdenum—From the atomic scale to continuous dislocation fields, Comput. Mater. Sci., 2018, vol. 149, pp. 125–133.  https://doi.org/10.1016/j.commatsci.2018.02.058

    Article  CAS  Google Scholar 

  26. Tang, J.F., Xiao, J.C., Deng, L., Li, W., Zhang, X.M., Wang, L., Xiao, S.F., Deng, H.Q., and Hu, W.Y., Shock wave propagation, plasticity, and void collapse in open-cell nanoporous Ta, Phys. Chem. Chem. Phys., 2018, vol. 20, no. 44, pp. 28039–28048.  https://doi.org/10.1039/C8CP05126G

    Article  CAS  Google Scholar 

  27. Starostenkov, M.D., Potekaev, A.I., Markidonov, A.V., Kulagina, V.V., and Grinkevich, L.S., Dynamics of edge dislocations in a low-stability FCC-system irradiated by high-energy particles, Russ. Phys. J., 2017, vol. 59, no. 9, pp. 1446–1453.  https://doi.org/10.1007/s11182-017-0929-6

    Article  CAS  Google Scholar 

  28. Ackland, G.J. and Jones, A.P., Applications of local crystal structure measures in experiment and simulation, Phys. Rev. B, 2006, vol. 73, no. 5, p. 054104.  https://doi.org/10.1103/PhysRevB.73.054104

    Article  CAS  Google Scholar 

  29. Terekhov, S.V. and Limanovskii, A.I., “Phase of emptiness” and diffuse phase transition, Fiz. Tekh. Vysokikh Davlenii, 2018, vol. 28, no. 3, pp. 65–74.

    Google Scholar 

  30. Terekhov, S.V., Fuzzy phase transition in amorphous Fe40Ni40P14B6 alloy: Thermodynamics of phases and kinetics of crystallization, Fiz. Tekh. Vysokikh Davlenii, 2019, vol. 29, no. 2, pp. 24–39.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. V. Markidonov, M. D. Starostenkov, D. A. Lubyanoi, P. V. Zakharov or V. N. Lipunov.

Additional information

Translated by S. Kuznetsov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Markidonov, A.V., Starostenkov, M.D., Lubyanoi, D.A. et al. Modeling of Healing Cylindrical Cavities Exposed to Shock Waves in Crystal Subjected to Shear Deformation. Steel Transl. 52, 208–214 (2022). https://doi.org/10.3103/S0967091222020127

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0967091222020127

Keywords:

Navigation