Skip to main content
Log in

Modernization of Helical Rolling Technology in a Multi-Roll Mill

  • Published:
Steel in Translation Aims and scope

Abstract

An analysis of the helical rolling process shows that the change in the axial speed of the roll along the length of the groove of the cross-roller mill does not correspond to the required nature of the change in the speed of the deformed billet. The process proceeds under intense axial compression, as a result of which a significant part of the metal being compressed in the contact zone is displaced into the inter-roll zone. The direction of the axial force in the corresponding zone of the roll groove is shown to depend on the inclination angle of the generatrix of the considered section of the roll to the rolling axis. A modernization of the helical rolling technology, which makes it possible to deform the billet under the effect of intralesional axial tension, is proposed. The set problem is accomplished by applying the calibration of the rolls, at which the ridge section of the roll, on which the axial force is directed against the direction of rolling, is located at the beginning while the pulling section, on which the direction of the axial force coincides with the direction of rolling, is located behind it. This scheme of action of axial forces in the zone of intensive compression of the billet creates the most favorable conditions for the flow of metal in the axial direction. A technical solution for the implementation of the stage of gripping the billet by rolls is proposed, and a description of this stage and the stationary phase of the process is provided. The fundamental change in the deformation conditions of the billet due to the modernization makes it possible to reduce the force load on the operating rolls, increase their performance, and reduce energy costs during rolling. This will ensure the rolling of a solid billet in a swaging mill with a higher drawing, will create the prerequisites for expanding the size and grade range when producing bars in radial shear rolling mills. When producing pipes in rolling lines with an Assel mill, the range of finished products can be also significantly expanded due to the production of thin-walled high-precision pipes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Rotenberg, Zh.Ya., Roll feed rate of screw rolling mill: Abstract of the manuscript, Bibliograf. Ukazatel’ VINITI Deponirovannye Nauchn. Raboty, 1988, no. 10, p. 187.

  2. Bellman, M. and Kümmerling, R., Optimierung des Spreizwinkels von Lochschrägwalzwerken für die Herstellung nahtloser Rohre, Stahl Eisen, 1993, vol. 113, no. 9, pp. 111–117.

    Google Scholar 

  3. Aleshchenko, A.S., Budnikov, A.S., and Kharitonov, E.A., Metal forming during pipe reduction on three-high rolling mill, Steel Transl., 2019, vol. 49, pp. 661–666. https://doi.org/10.3103/S0967091219100024

    Article  Google Scholar 

  4. Romantsev, B.A., Kharitonov, E.A., Budnikov, A.S., Le, V.Ch., and Chan, B.Kh., Screw rolling of pipes in a four-high rolling mill, Izv. Vyssh. Uchebn. Zaved., Chern. Metall., 2019, vol. 62, no. 9, pp. 686–690. https://doi.org/10.17073/0368-0797-2019-9-686-690

    Article  Google Scholar 

  5. Skripalenko, M.M., Chan, B.Kh., Romantsev, B.A., Galkin, S.P., and Samusev, S.V., Investigation of the features of billet stress-strain state at different screw rolling schemes using computer simulation, Stal’, 2019, no. 2, pp. 35–39.

  6. Zinov’ev, A.V., Koshmin, A.N., and Chasnikov, A.Ya., Effect of continuous extrusion parameters on alloy M1 round section bar microstructure and mechanical property formation, Metallurgist, 2019, vol. 63, nos. 3–4, pp. 422–428. https://doi.org/10.1007/s11015-019-00838-3

    Article  CAS  Google Scholar 

  7. Fomin, A.V., Aleshchenko, A.S., Maslenniko, I.M., Galkin, S.P., and Nikulin, A.N., Structural and analytical evaluation of the strain intensity and its components during cross-roll piercing at different feed angles, Metallurgist, 2019, vol. 63, nos. 5–6, pp. 477–486. https://doi.org/10.1007/s11015-019-00848-1

    Article  Google Scholar 

  8. Pehle, H.J., Krahn, M.V., and Horst, Ch.A., Verfahren und Vorrichtung zum Herstellen eines Hohlblocks aus einem Block, DE Patent, 102010047868, 2010.

  9. Rotenberg Zh.Ya., Osadchii V.Ya., Nodev E.O., and Urin Yu.L., Analytical model of screw piercing process, Sovershenstvovanie protsessov obrabotki metallov davleniem. Mezhvuzovskii sb. nauchnykh tr. VZMI (Improvement of Metal Forming Processes: Interuniversity Transactions of Sci. Papers of All-Union External Degree Mechanical Engineering University), Moscow: 1982, pp. 78–92.

  10. Shurkin, P.K., Akopyan, T.K., Galkin, S.P., and Aleshchenko, A.S., Effect of radial shear rolling on the structure and mechanical properties of a new-generation high-strength aluminum alloy based on the Al–Zn–Mg–Ni–Fe system, Met. Sci. Heat Treat., 2019, vol. 60, nos. 11-12, pp. 764–769. https://doi.org/10.1007/s11041-019-00353-x

    Article  CAS  Google Scholar 

  11. Akopyan, T.K., Gamin, Y.V., Galkin, S.P., Prosviryakov, A.S., Aleshchenko, A.S., Noshin, M.A., Koshmin, A.N., and Fomin, A.V., Radial-shear rolling of high-strength aluminum alloys: Finite element simulation and analysis of microstructure and mechanical properties, Mater. Sci. Eng. A, 2020, vol. 786, p. 139424. https://doi.org/10.1016/j.msea.2020.139424

    Article  CAS  Google Scholar 

  12. Karpov, B.V., Skripalenko, M.M., Galkin, S.P., Skripalenko, M.N., Samusev, S.V., Huy, T.B., and Pavlov, S.A., Studying the nonstationary stages of screw rolling of billets with profiled ends, Metallurgist, 2017, vol. 61, nos. 3-4, pp. 257–264. https://doi.org/10.1007/s11015-017-0486-9

    Article  Google Scholar 

  13. Goncharuk, A.V., Fadeev, V.A., and Kadach, M.V., Seamless pipes manufacturing process improvement using mandreling, Solid State Phenom., 2021, vol. 316, pp. 402–407. https://doi.org/10.4028/www.scientific.net/SSP.316.402

  14. Naizabekov, A., Arbuz, A., Lezhnev, S., and Panin, E., Study of technology for ultrafine-grained materials for usage as materials in nuclear power, New Trends Prod. Eng., 2019, vol. 2, no. 2, pp. 114–125. https://doi.org/10.2478/ntpe-2019-0077

    Article  Google Scholar 

  15. Lezhnev, S.N., Naizabekov, A.B., Panin, E.A., Volokitina, I.E., and Arbuz, A.S., Graded microstructure preparation in austenitic stainless steel during radial-shear rolling, Metallurgist, 2021, vol. 64, nos. 11–12, pp. 1150–1159. https://doi.org/10.1007/s11015-021-01100-5

    Article  CAS  Google Scholar 

  16. Wang, F.-J., Shuang, Y.-H., Hu, J.-H., Wang, Q.-H., and Sun, J.-C., Explorative study of tandem skew rolling process for producing seamless steel tubes, J. Mater. Process. Technol., 2014, vol. 214, no. 8, pp. 1597–1604. https://doi.org/10.1016/j.jmatprotec.2014.03.002

    Article  CAS  Google Scholar 

  17. Mashekov, S., Nurtazaev, E., Mashekova, A., and Abishkenov, M., Extruding aluminum bars on a new structure radial shear mill, Metalurgija, 2021, vol. 60, nos. 3–4, pp. 427–430.

    CAS  Google Scholar 

  18. Mashekov, S.A., Absadykov, B.N., and Mashekova, A.S., Investigation of the kinematics of rolling ribs and pipes on a continuous radial-shifting mill of a new construction, News Natl. Acad. Sci. Rep. Kazakhstan. Ser. Geol. Tech. Sci., 2018, vol. 3, no. 430, pp. 98–109.

    Google Scholar 

  19. Pater, Z., Tomczak, J., and Bulzak, T., Numerical analysis of the skew rolling process for main shafts, Metalurgija, 2015, vol. 54, no. 4, pp. 627–630.

    Google Scholar 

  20. Roller, E., Verfahren zum Kaltwalzen von nahtlosen Kupferrohren, DE Patent 10107567, 2020.

  21. Lü, C.Q., Guo, D., Gao, H.F., Yang, Z.L., and Ju, Y.H., Effect of helical deformation on fatigue life of torsion shaft by rolling, Suxing Gongcheng Xuebao J. Plast. Eng., 2019, vol. 26, no. 2, pp. 177–184. https://doi.org/10.3969/j.issn.1007-2012.2019.02.023

    Article  Google Scholar 

  22. Cao, Q., Hua, L., and Qian, D., Finite element analysis of deformation characteristics in cold helical rolling of bearing steel-balls, J. Central South Univ., 2015, vol. 22, no. 4, pp. 1175–1183. https://doi.org/10.1007/s11771-015-2631-6

    Article  CAS  Google Scholar 

  23. Shevakin, Yu.F. and Gleiberg, A.Z., Proizvodstvo trub (Pipe Production), Moscow: Metallurgiya, 1968.

  24. Teterin, P.K., Teoriya poperechno-vintovoi prokatki (Theory of Screw Rolling), Moscow: Metallurgiya, 1971.

  25. Rotenberg, Zh., Verfahren zum Schrägwalzen von zylindrischen Erzeugnissen, DE Patent 102012007379, 2016.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zh. Ya. Rotenberg or A. S. Budnikov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Ivanov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rotenberg, Z.Y., Budnikov, A.S. Modernization of Helical Rolling Technology in a Multi-Roll Mill. Steel Transl. 52, 11–16 (2022). https://doi.org/10.3103/S096709122201020X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S096709122201020X

Keywords:

Navigation