Skip to main content

Effect of Structure and Nonmetallic Inclusions on Hydrogen Sulfide Cracking Resistance in Structural Pipe Steels

Abstract

The results of studies on the effect of nonmetallic inclusions and the metal structure formed after using different modes of thermomechanical treatment and subsequent cooling, as well as different heat treatment modes, exerted on the resistance of rolled products and electric-welded pipes obtained by welding by using high frequency currents (HFC welding) with respect to cracking in the environment of hydrogen sulfide (HIC) are presented. It is established that the presence of nonmetallic inclusions of extended morphology exerts a decisive effect on the corrosion damage in H2S-containing media, whereas the metal structure (type, dispersion, homogeneity) plays a secondary role, with the exception of the formation of increased hardness structures in the metal due to segregation processes. It is shown that plastic deformation in a cold state significantly reduces the resistance of the metal with respect to hydrogen-induced cracking.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. Efron, L.I., Metallovedenie v bol’shoi metallurgiyi. Trubnye stali (Physical Metallurgy in Large-Scale Production: Pipe Steel), Moscow: Metallurgizdat, 2012.

  2. Shabalov, I.P., Matrosov, Yu.I., Kholodnyi, A.A., et al., Stal’ dlya gazonefteprovodnykh trub, stoikikh protiv razrusheniya v serovodorodsoderzhashchikh sredakh (Steel for Gas-Oil Pipes Resistant to Destruction in Hydrogen Sulfide-Containing Environments), Moscow: Metallurgizdat, 2017.

  3. Carneiro, R.A. and Ratnapuli, R.C., The influence of chemical composition and microstructure of API linepipe steels on hydrogen induced cracking and sulfide stress corrosion cracking, Mater. Sci. Eng., A, 2003, vol. 357, pp. 104–110.

    Article  Google Scholar 

  4. Nayak, S.S., Misra, R.D.K., and Hartmann, J., Microstructure and properties of low manganese and niobium containing HIC pipeline steel, Mater. Sci. Eng., A, 2008, vol. 494, pp. 456–463.

    Article  Google Scholar 

  5. Nakasugi, H. and Matsuda, H., Development of new line-pipe steels for sour-gas service, Nippon Steel Tech. Rep., 1979, vol. 14, pp. 66–78.

    Google Scholar 

  6. Kholodnyi, A.A., Cand. Sci. (Eng.) Dissertation, Moscow, 2016.

  7. Ioffe, A.V., Extended Abstract of Doctoral (Eng.) Dissertation, Penza, 2018.

  8. Zikeev, V.N., Doctoral (Eng.) Dissertation, Moscow, 1984.

  9. Komissarov, A.A., Sokolov, P.Yu., Tikhonov, S.M., et al., Production of low-carbon steel sheet for oil-industry pipe, Steel Transl., 2018, vol. 48, no. 11, pp. 748–753.

    Article  Google Scholar 

  10. Kudashov, D.V., Mursenkov, E.S., Stepanov, P.P., et al., Assimilation of pipe steel extra-furnace treatment and casting technology with specification for resistance to H2S media under casting and rolling complex conditions, Metallurgist, 2017, vol. 61, nos. 7–8, pp. 656–665.

    CAS  Article  Google Scholar 

  11. Mursenkov, E.S., Kudashov, D.V., Vorozheva, E.L., et al., Development and application of the production technology in the conditions of the forestry complex of the OMK-Steel branch of pipe steel grades with the requirement for resistance to hydrogen cracking, in Razvitie tekhnologii proizvodstva stali, prokata i trub na Vyksunskoi proizvodstvennoi ploshchadke (Development of Steel, Rolled Products, and Pipe Production Technology at Vyksunskaya Industrial Site), Moscow: Metallurgizdat, 2016, pp. 210–232.

  12. Denisova, T.V., Vyboishchik, M.A., Tetyueva, T.V., et al., Changes in the structure and properties of low-carbon low-alloy pipe steels upon inoculation with REM, Met. Sci. Heat Treat., 2013, vol. 54, nos. 9–10, pp. 530–534.

    CAS  Article  Google Scholar 

  13. Belyi, A.P., Isaev, O.B., Matrosov, Yu.I., et al., Tsentral’naya segregatsionnaya neodnorodnost’ v nepreryvnolitykh listovykh zagotovkakh i tolstolistovom prokate (Central Segregation Inhomogeneity in Continuously Casted Billets and Rolled Thick-Sheets), Moscow: Metallurgizdat, 2005.

  14. Matrosov, Yu.I., Kolyasnikova, N.V., Nosochenko, A.O., et al., Influence of carbon and segregation on H2S resistance of pipe steels, Steel Transl., 2002, vol. 32, no. 11, pp. 69–74.

    Google Scholar 

  15. Matrosov, Yu.I., Kholodnyi, A.A., Matrosov, M.Yu., et al., Effect of accelerated cooling parameters on microstructure and hydrogen cracking resistance of low-alloy pipe steels, Metallurgist, 2015, vol. 59, nos. 1–2, pp. 60–68.

    CAS  Article  Google Scholar 

  16. Tamehoro, H., Takeda, T., Matsuda, S., et al., Effect of accelerated cooling after control rolling on the hydrogen induced cracking resistance of line pipe steel, Trans. Iron Steel Inst. Jpn., 1985, vol. 25, pp. 982–988.

    Article  Google Scholar 

  17. Naumenko, V.V., Muntin, A.V., Mursenkov, E.S., et al., Resistance of pipes welded with high frequency currents from constructional steel to hydrogen cracking, Chern. Met., 2021, no. 6, pp. 32–37.

  18. Pemov, I.F., Nizhel’skii, D.V., Naumenko, A.A., et al., Production of corrosion-resistant strip (strength class K50–K52) at OAO Ural’skaya Stal’, Steel Transl., 2013, vol. 43, no. 4, pp. 215–220.

    Article  Google Scholar 

  19. Kudashov, D.V., Somov, S.A., Orekhov, D.M., et al., RF Patent 2520170, Byull. Izobret., 2014, no. 17.

  20. Mitrofanov, A.V., Baraboshkin, K.A., et al., RF Patent 2675307, Byull. Izobret., 2018, no. 35.

  21. Kudashov, D.V., Semernin, G.V., Peiganovich, I.V., et al., Modern high-tech steel 05KhGB for the manufacture of electric-welded oil-gas pipes with higher reliability, Inzh. Prakt., 2015, no. 5, pp. 50–56.

  22. Naumenko, V.V., Mursenkov, E.S., and Muntin, A.V., Production of steels of K52 strength class with a reduced chromium content and requirements for cold and corrosion resistance in conditions of the casting-rolling industrial complex, Chern. Met., 2021, no. 3, pp. 10–16.

  23. Rodionova, I.G., Mitrofanov, A.V., Tikhonov, S.M., et al., Severkor as modern rolled steel for oilfield pipelines, Inzh. Prakt., 2017, no. 12, pp. 38–44.

  24. Mursenkov, E.S., Kudashov, D.V., Kislitsa, V.V., et al., Features of technology for pipe steel modification with calcium and cerium with specification for resistance to H2S-media, Metallurgist, 2019, vol. 62, nos. 9–10, pp. 994–1005.

    CAS  Article  Google Scholar 

  25. Mursenkov, E.S., Kudashov, D.V., Vorozheva, E.L., et al., Development and application of the production technology in the conditions of the forestry complex of the OMK-Steel branch of pipe steel grades with the requirement for resistance to hydrogen cracking, in Razvitie tekhnologii proizvodstva stali, prokata i trub na Vyksunskoi proizvodstvennoi ploshchadke (Development of Steel, Rolled Products, and Pipe Production Technology at Vyksunskaya Industrial Site), Moscow: Metallurgizdat, 2016, pp. 210–232.

  26. Naumenko, V.V., Bagmet, O.A., and Mursenkov, E.S., Resistance of low-carbon microalloyed pipe steels to cracking in hydrogen sulfide media, Chern. Metall., Byull. Nauchno-Tekh. Ekon. Inf., 2018, no. 7, pp. 56–64.

  27. Garcia-Mateo, C., Capdevila, C., Caballero, F.G., and Garcia de Andrés, C., Influence of V precipitates on acicular ferrite transformation. Part 1: The role of nitrogen, ISIJ Int., 2008, vol. 48, pp. 1270–1275.

    CAS  Article  Google Scholar 

  28. Zhang, S., Liu, K., Chen, H., et al., Effect of increased N content on microstructure and tensile properties of low-C V-microalloyed steels, Mater. Sci. Eng., A, 2016, vol. 651, pp. 951–960.

    CAS  Article  Google Scholar 

  29. Naumenko, V.V., Muntin, A.V., Baranova, O.A., et al., The effect of heat treatment on the mechanical properties and resistance to cracking of structural steel in the hydrogen sulfide environment, Chern. Met., 2020, no. 6, pp. 56–61.

  30. Naumenko, V.V., Muntin, A.V., Baranova, O.A., et al., Resistance to hydrogen cracking of rolled structural steel after heat processing, Steel Transl., 2021, vol. 51, no. 3, pp. 211–216.

    Article  Google Scholar 

  31. Pogorelova, I.G., Extended Abstract of Cand. Sci. (Eng.) Dissertation, Rostov-on-Don, 2009.

Download references

ACKNOWLEDGMENTS

The authors express sincere gratitude to the employees of the Center for Research Laboratories VSW JSC VMZ chief researcher E.S. Mursenkov, chief specialist in electron microscopy and X-ray diffraction K.S. Smetanin and research engineer O.A. Baranova for taking an active part in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Naumenko.

Additional information

Translated by O. Polyakov

About this article

Verify currency and authenticity via CrossMark

Cite this article

Naumenko, V.V. Effect of Structure and Nonmetallic Inclusions on Hydrogen Sulfide Cracking Resistance in Structural Pipe Steels. Steel Transl. 51, 920–929 (2021). https://doi.org/10.3103/S096709122112007X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S096709122112007X

Keywords:

  • structural steel
  • rolled products
  • HFC welded pipe
  • thermomechanical treatment
  • heat treatment
  • microstructure
  • hydrogen-induced cracking
  • nonmetallic inclusions