Skip to main content
Log in

Properties, Applications, and Production of Diborides of Some Transition Metals: Review. Part 2. Chromium and Zirconium Diborides

  • Published:
Steel in Translation Aims and scope

Abstract

Part two of the review considers the properties, applications, and methods of producing chromium and zirconium diborides. These diborides are oxygen-free, refractory metal-like compounds characterized by high values of thermal and electrical conductance and relatively high hardness. Chromium and zirconium diborides exhibit significant chemical resistance in aggressive environments. Thus, they have found application in modern engineering. Chromium diboride is used as a sintering additive to improve the properties of boron carbide and titanium diboride ceramics. Zirconium diboride is a component of advanced ultrahigh temperature ZrB2–SiC ceramics (UHTC) used in supersonic aircrafts and gas turbine assemblies. B4C–CrB2, and B4C–ZrB2 ceramics have high-quality performance characteristics, in particular, increased crack resistance. The properties of refractory compounds depend on the content of impurities and dispersion. Therefore, to solve a specific problem associated with the use of refractory compounds, it is important to choose the method of their preparation correctly and determine the admissible content of impurities in the primary components. This leads to the diversity of existing methods of synthesizing borides. The main methods of their preparation are synthesis from elements, boron thermal reduction of oxides, carbothermal reduction (carbon reduction of mixtures of metal oxides and boron), metallothermic reduction of metal oxides and boron mixtures, and boron-carbide reduction. There is also plasma-chemical synthesis (deposition from the vapor-gas phase) used to obtain diboride nanopowders. Each of these methods is described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Serebryakova, T.I., Neronov, V.A., and Peshev, P.D., Vysokotemperaturnye boridy (High Temperature Borides), Moscow: Metallurgiya, 1991.

  2. Svoistva, poluchenie i primenenie tugoplavkikh soedinenii. Spravochnik (Properties, Production, and Application of Refractory Compounds: Handbook), Kosolapova, T.Ya., Ed., Moscow: Metallurgiya, 1986.

    Google Scholar 

  3. Kosolapova, T.Ya., Chemical properties of refractory compounds, Zh. Vses. Khim. O-va im. D.I. Mendeleeva, 1979, vol. 34, no. 3, pp. 244–249.

    Google Scholar 

  4. Oreshkin, V.D., Svetlopolyanskii, V.I., and Serebryakova, T.I., Wear resistance of surfaces faced with borides, Sov. Powder Metall. Met. Ceram., 1971, vol. 10, no. 3, pp. 232–235.

    Article  Google Scholar 

  5. Gorbunov, A.E. and Bryksin-Lyamin, M.P., Refractory borides as the main constituents of hard-facing powder mixtures, Sov. Powder Metall. Met. Ceram., 1971, vol. 10, no. 4, pp. 330–335.

    Article  Google Scholar 

  6. Chernega, S.M., Complex saturation of carbon steels with boron and chromium in an activated medium, Izv. Vyssh. Uchebn. Zaved., Chern. Metall., 1999, no. 11, pp. 58–60.

  7. Gorshkov, B.N., Kudryavtsev, Yu.P., Loskutov, V.S., Neronov, V.A., and Alekseev, V.V., Application of coatings of some transition metal borides by plasma-deposition, Sov. Powder Metall. Met. Ceram., 1980, vol. 19, no. 5, pp. 350–353.

    Article  Google Scholar 

  8. Obabkov, N.V., Sorokin, V.G., Guzanov, B.N., Beketov, A.R., Svistunov, V.V., and Shurygin, V.S., Temperature-resistant wear-resisting coatings with chromium borides, in Vysokotemperaturnaya zashchita materialov (High-Temperature Material Protection), Leningrad: Nauka, 1981, pp. 159–163.

  9. Jordan, L.R., Betts, A.J., Dahm, K.L., Dearnley, P.A., and Wright, G.A., Corrosion and passivation mechanism of chromium diboride coatings on stainless steel, Corros. Sci., 2005, vol. 47, no. 5, pp. 1085–1096. https://doi.org/10.1016/j.corsci.2003.10.018

    Article  CAS  Google Scholar 

  10. Dearnley, P.A., Schellewald, M., and Dahm, K.L., Characterization and wear response of metal-boride coated WC–Co, Wear, 2005, vol. 259, nos. 7–12, pp. 861–869. https://doi.org/10.1016/j.wear.2005.01.031

    Article  CAS  Google Scholar 

  11. Yamada, S., Hirao, K., Yamauchi, Y., and Kanzaki, S., Mechanical and electrical properties of B4C–CrB2 ceramics fabricated by liquid phase sintering, Ceram. Int., 2003, vol. 29, no. 3, pp. 299–304. https://doi.org/10.1016/S0272-8842(02)00120-7

    Article  CAS  Google Scholar 

  12. Königshofer, R., Furnsinn, S., Steinkellner, P., Lengauer, W., Haas, R., Rabitsch, K., and Scheerer, M., Solid-state properties of hot-pressed TiB2 ceramics, Int. J. Refract. Met. Hard Mater., 2005, vol. 23, nos. 4–6, pp. 350–357. https://doi.org/10.1016/j.ijrmhm.2005.05.006

    Article  CAS  Google Scholar 

  13. Murthy, T.S.R.Ch., Sonber, J.K., Subramanian, C., Fotedar, R.K., Gonal, M.R., and Suri, A.K., Effect of CrB2 addition on densification, properties and oxidation resistance of TiB2, Int. J. Refract. Met. Hard Mater., 2009, vol. 27, no. 6, pp. 976–984. https://doi.org/10.1016/j.ijrmhm.2009.06.004

    Article  CAS  Google Scholar 

  14. Artamonov, A.Ya., Tutakov, O.V., and Daich, A.I., Polishing power of refractory compounds, Sov. Powder Metall. Met. Ceram., 1967, vol. 6, no. 2, pp. 109–113.

    Article  Google Scholar 

  15. Kiparisov, S.S., Libenson, G.A., and Pankevich, A.P., Manufacturing of low-porous sintered products from zirconium diboride, Tsvetn. Met., 1975, no. 1, pp. 66–67.

  16. Samsonov, G.V., Panasyuk, A.D., and Borovikova, M.S., Contact reaction between refractory compounds and liquid metals. III. Wetting of metal-like borides by liquid nontransition metals, Sov. Powder Metall. Met. Ceram., 1973, vol. 12, no. 5, pp. 403–407.

    Article  Google Scholar 

  17. Mroz, C., Annual minerals review: zirconium diboride, Am. Ceram. Soc. Bull., 1995, vol. 74, no. 6, pp. 164–165.

    CAS  Google Scholar 

  18. Kuzenkova, M.A., Kislyi, P.S., and Goncharenko, G.N., Reaction of liquid steel with diborides of refractory metals, Sov. Powder Metall. Met. Ceram., 1971, vol. 10, no. 4, pp. 720–723.

    Article  Google Scholar 

  19. Fahrenholtz, W.G., Hilmas, G.E., Talmy, I.G., and Zaykoski, J.A., Refractory diborides of zirconium and hafnium, J. Am. Ceram. Soc., 2007, vol. 90, no. 5, pp. 1347–1364. https://doi.org/10.1111/j.1551-2916.2007.01583.x

    Article  CAS  Google Scholar 

  20. Sonber, J.K. and Suri, A.K., Synthesis and consolidation of zirconium diboride: review, Adv. Appl. Ceram., 2011, vol. 110, no. 6, pp. 321–334. https://doi.org/10.1179/1743676111Y.0000000008

    Article  CAS  Google Scholar 

  21. Monteverde, F., Savino, R., and Fumo, M.D.S., Dynamic oxidation of ultra-high temperature ZrB2–SiC under high enthalpy supersonic flows, Corros. Sci., 2011, vol. 53, no. 3, pp. 922–929. https://doi.org/10.1016/j.corsci.2010.11.018

    Article  CAS  Google Scholar 

  22. Patel, M., Reddi, J.J., Prasad, V.V.B., and Jayaram, V., Strength of hot-pressed ZrB2–SiC composite after exposure to high temperatures (1000–1700°C), J. Eur. Ceram. Soc., 2012, vol. 32, no. 16, pp. 4455–4467. https://doi.org/10.1016/j.jeurceramsoc.2012.06.025

    Article  CAS  Google Scholar 

  23. Bird, M.W., Aune, R.P., Yu, F., Becher, P.F., and White, K.W., Creep behavior of a zirconium diboride-silicon carbide composite, J. Eur. Ceram. Soc., 2013, vol. 33, nos. 13–14, pp. 2407–2420. https://doi.org/10.1016/j.jeurceramsoc.2013.03.022

    Article  CAS  Google Scholar 

  24. Zou, X., Fu, Q., Liu, L., Li, H., Wang, Y., Yao, H., and He, Z., ZrB2–SiC coating to protect carbon/carbon composites against ablation, Surf. Coat. Technol., 2013, vol. 226, pp. 17–21. https://doi.org/10.1016/j.surfcoat.2013.03.027

    Article  CAS  Google Scholar 

  25. Gao, D., Zhang, Y., Xu, C., Song, Y., and Shi, X., Oxidation kinetics of hot-pressed ZrB2–SiC ceramic matrix composites, Ceram. Int., 2013, vol. 39, no. 3, pp. 3113–3119. https://doi.org/10.1016/j.ceramint.2012.09.091

    Article  CAS  Google Scholar 

  26. Krupa, M.S., Kumar, N.D., Kumar, R.S., Chakravarthy, P., and Venkateswarlu, K., Effect of zirconium diboride addition on the properties of silicon carbide composites, Ceram. Int., 2013, vol. 39, no. 8, pp. 9567–9574. https://doi.org/10.1016/j.ceramint.2013.05.075

    Article  CAS  Google Scholar 

  27. Neuman, E.W., Hilmas, G.E., and Fahrenholtz, W.G., Mechanical behavior of zirconium diboride-silicon carbide ceramics at elevated temperature in air, J. Eur. Ceram. Soc., 2013, vol. 33, nos. 15–16, pp. 2889–2899. https://doi.org/10.1016/j.jeurceramsoc.2013.05.003

    Article  CAS  Google Scholar 

  28. Ortona, A., Lagos, M.A., Scocchi, G., and Barcena, G., Spark plasma sintering of ZrB2–SiC composites with in-situ reaction bonded silicon carbide, Ceram. Int., 2014, vol. 40, no. 1, pp. 821–826. https://doi.org/10.1016/j.ceramint.2013.06.074

    Article  CAS  Google Scholar 

  29. Podchernyaeva, I.A., Panasyuk, A.D., Panashenko, V.M., Grigor’ev, O.N., Dukhota, A.I., and Zhiginas, V.V., Abrasive wear of ZrB2-containing spark-deposited and combined coatings on titanium alloy. II. Nonfixed-abrasive wear of ZrB2-containing coatings, Powder Metall. Met. Ceram., 2009, vol. 48, nos. 7–8, pp. 435–440. https://doi.org/10.1007/s11106-009-9148-1

    Article  CAS  Google Scholar 

  30. Ordan’yan, S.S., Dmitriev, A.I., Bizhev, K.T., and Stepanenko, E.K., Interaction in the system B4C–ZrB2, Sov. Powder Metall. Met. Ceram., 1988, vol. 27, no. 1, pp. 38–40.

    Article  Google Scholar 

  31. Kovalev, A.V., Dudnik, E.M., Grigor’ev, O.N., Shaposhnikova, T.I., and Martsynyuk, E.S., Directionally solidified eutectic of the B4C–ZrB2 system, Powder Metall. Met. Ceram., 2000, vol. 39, no. 1, pp. 63–66.

    Article  CAS  Google Scholar 

  32. Zou, J., Huang, S.-G., Vanmeensel, K., Zhang, G.-J., Vleugels, J., and van der Biest, O., Spark plasma sintering of superhard B4C–ZrB2 ceramics by carbide boronizing, J. Am. Ceram. Soc., 2013, vol. 96, no. 4, pp. 1055–1059. https://doi.org/10.1111/jace.12284

    Article  CAS  Google Scholar 

  33. Mestvirishvili, Z., Bairamashvili, I., Kvatchadze, V., and Rekhviashvili, N., Thermal and mechanical properties of B4C–ZrB2 ceramic composite, Mater. Sci. Eng., B, 2015, vol. 5, nos. 9–10, pp. 385–393. https://doi.org/10.17265/2161-6221/2015.9-10.007

    Article  CAS  Google Scholar 

  34. Shcherbakov, V.A., Gryadunov, A.N., and Alymov, M.I., Synthesis and characteristics of the B4C–ZrB2 composite, Lett. Mater., 2017, vol. 7, no. 4, pp. 398–401. https://doi.org/10.22226/2410-3535-2017-4-398-401

    Article  Google Scholar 

  35. Gurin, V.N., Methods of refractory compounds synthesis and prospects for their application to create new materials, Zh. Vses. Khim. O-va im. D.I. Mendeleeva, 1979, vol. 24, no. 3, pp. 212–222.

    CAS  Google Scholar 

  36. Merzhanov, A.G. and Borovinskaya, I.P., Self-propagating high-temperature synthesis in chemistry and technology of refractory compounds, Zh. Vses. Khim. O-va im. D.I. Mendeleeva, 1979, vol. 24, no. 3, pp. 223–227.

    CAS  Google Scholar 

  37. Samsonov, G.V., Svoistva elementov. Chast’ 1. Fizicheskie svoistva. Spravochnik (Properties of Elements, Part 1: Physical Properties: Handbook), Samsonov, G.V., Ed., Moscow: Metallurgiya, 1976.

    Google Scholar 

  38. Samsonov, G.V. and Perminov, V.P., Magnietermiya (Magnesiothermy), Moscow: Metallurgiya, 1971.

    Google Scholar 

  39. Fiziko-khimicheskie svoistva okislov. Spravochnik (Physicochemical Properties of Oxides: Handbook), Samsonov, G.V., Ed., Moscow: Metallurgiya, 1978.

    Google Scholar 

  40. Kieffer, R. and Benesovsky, F., Hartmetalle, Vienna: Springer-Verlag, 1965. https://doi.org/10.1007/978-3-7091-8127-0

  41. Kislyi, P.S., Kuzenkova, M.A., Bodnaruk, N.I., and Grabchuk, B.L., Karbid bora (Boron Carbide), Kiev: Naukova Dumka, 1988.

  42. Morris, M.A. and Morris, D.G., Ball-milling of elemental powders-compound formation and/or amorphization, J. Mater. Sci., 1991, vol. 26, pp. 4687–4696. https://doi.org/10.1007/BF00612407

    Article  CAS  Google Scholar 

  43. Iizumi, K., Kudaka, K., Maezawa, D., and Sasaki, T., Mechanochemical synthesis of chromium borides, J. Ceram. Soc. Jpn., 1999, vol. 107, no. 1245, pp. 491–493. https://doi.org/10.2109/jcersj.107.491

    Article  CAS  Google Scholar 

  44. Makarenko, G.N., Krushinskaya, L.A., Timofeeva, I.I., Matsera, V.E., Vasil’kovskaya, M.A., and Uvarova, I.V., Formation of diborides of groups IV–VI transition metals during mechanochemical synthesis, Powder Metall. Met. Ceram., 2015, vol. 53, nos. 9–10, pp. 514–521. https://doi.org/10.1007/s11106-015-9645-3

  45. Borovinskaya, I.P. and Novikov, N.P., Synthesis of borides from oxides in self-propagating mode, in Protsessy goreniya v khimicheskoi tekhnologii i v metallurgii (Combustion Processes in Chemical Technology and Metallurgy), Chernogolovka: Inst. Khim. Fiz., Akad. Nauk SSSR, 1975, pp. 131–136.

  46. Yeh, C.L. and Wang, H.J., Preparation of borides in Nb–B and Cr–B systems by combustion synthesis involving borothermic reduction of Nb2O5 and Cr2O3, J. Alloys Compd., 2010, vol. 490, nos. 1–2, pp. 366–371. https://doi.org/10.1016/j.jallcom.2009.10.007

    Article  CAS  Google Scholar 

  47. Kumar, M.B., Kumar, S., and Ganguli, A.K., Surface decoration through electrostatic interaction leading to enhanced reactivity: low temperature synthesis of nanostructured chromium borides (CrB and CrB2), J. Solid State Chem., 2013, vol. 200, pp. 117–122. https://doi.org/10.1016/j.jssc.2013.01.005

    Article  CAS  Google Scholar 

  48. Liu, Z., Wei, Y., Meng, X., and Ran, S., Synthesis of CrB2 powders at 800°C under ambient pressure, Ceram. Int., 2017, vol. 43, no. 1, pp. 1628–1631. https://doi.org/10.1016/j.ceramint.2016.10.108

    Article  CAS  Google Scholar 

  49. Gorbunov, A.E., Carbothermic method of preparation of chromium, molybdenum, and zirconium borides, Sov. Powder Metall. Met. Ceram., 1966, vol. 5, no. 11, pp. 885–888.

    Article  Google Scholar 

  50. Markovskii, L.Ya., Vekshina, N.V., Bezruk, E.T., Sukhareva, G.E., and Voevodskaya, T.K., A magnesium-thermic method for the preparation of metal borides, Sov. Powder Metall. Met. Ceram., 1969, vol. 8, no. 5, pp. 350–354.

    Article  Google Scholar 

  51. Torabi, O., Golabgir, M.H., and Tajizadegan, H., An investigation on the formation mechanism of nano CrB2 powder in the Mg–B2O3–Cr2O3 system, Int. J. Refract. Met. Hard Mater., 2015, vol. 51, pp. 50–55. https://doi.org/10.1016/j.ijrmhm.2015.02.015

    Article  CAS  Google Scholar 

  52. Kartvelishvili, Yu.M., Mchedlishvili, D.I., and Khocholava, Z.D., Obtaining chromium borides, in Vysokotemperaturnye boridy i silitsidy (High-Temperature Borides and Silicides), Kiev: Naukova Dumka, 1978, pp. 56–59.

  53. Rao, L., Gillan, E.G., and Kaner, R.B., Rapid synthesis of transition-metal borides by solid-state metathesis, J. Mater. Res., 1995, vol. 10, no. 2, pp. 353–361. https://doi.org/10.1557/JMR.1995.0353

    Article  CAS  Google Scholar 

  54. Kuznetsov, N.T., Golovanova, A.I., Kedrova, N.S., Mal’tseva, N.N., and Shevchenko, Y.N., Thermal reactions of alkaline metal borohydrides: synthesis of borides, J. Less-Common Met., 1986, vol. 117, nos. 1–2, pp. 41–44. https://doi.org/10.1016/0022-5088(86)90009-3

    Article  CAS  Google Scholar 

  55. Karasev, A.I., Manufacture of powders of technical titanium, zirconium, chromium, and tungsten borides by the boron carbide method, Sov. Powder Metall. Met. Ceram., 1973, vol. 12, no. 10, pp. 777–780.

    Article  Google Scholar 

  56. GOST (State Standard) 5744-85: Abrasive Grains from Boron Carbide. Specifications, Moscow: Izd. Standartov, 1998.

  57. Sonber, J.K., Murthy, T.S.R.Ch., Subramanian, C., Kumar, S., Fotedar, R.K., and Suri, A.K., Investigation on synthesis, pressureless sintering and hot pressing of chromium diboride, Int. J. Refract. Met. Hard Mater., 2009, vol. 27, no. 5, pp. 912–918. https://doi.org/10.1016/j.ijrmhm.2009.05.008

    Article  CAS  Google Scholar 

  58. Krutskii, Yu.L., Dyukova, K.D., Bannov, A.G., Sokolov, V.V., Pichugin, A.Yu., Maksimovskii, E.A., Ukhina, A.V., Krutskaya, T.M., Popov, M.V., and Netskina, O.V., Synthesis of finely dispersed chromium diboride powder using carbon nanofibre, Perspekt. Mater., 2015, no. 3, pp. 55–61.

  59. Krutskii, Yu.L., Dyukova, K.D., Kuz’min, R.I., Netskina, O.V., and Iorkh, A.E., Synthesis of finely dispersed chromium diboride from nanofibrous carbon, Izv. Vyssh. Uchebn. Zaved., Chern. Metall., 2018, vol. 61, no. 10, pp. 800–806. https://doi.org/10.17073/0368-0797-2018-10-800-806

    Article  CAS  Google Scholar 

  60. Kuvshinov, G.G., Mogilnykh, Yu.L., Kuvshinov, D.G., Yermakov, D.Yu., Yermakova, M.A., Salanov, A.N., and Rudina, N.A., Mechanism of porous filamentous carbon granule formation on catalytic hydrocarbon decomposition, Carbon, 1999, vol. 37, pp. 1239–1246. https://doi.org/10.1016/S0008-6223(98)00320-0

    Article  CAS  Google Scholar 

  61. Krutskii, Yu.L., Bannov, A.G., Sokolov, V.V., Dyukova, K.D., Shinkarev, V.V., Ukhina, A.V., Maksimovskii, E.A., Pichugin, A.Yu., Solov’ev, E.A., Krutskaya, T.M., and Kuvshinov, G.G., Synthesis of highly dispersed boron carbide from nanofibrous carbon, Nanotechnol. Russ., 2013, vol. 8, nos. 3–4, pp. 191–198. https://doi.org/10.1134/S1995078013020109

    Article  Google Scholar 

  62. Krutskii, Yu.L., Nepochatov, Yu.K., Pel’, A.N., Skovorodin, I.N., Dyukova, K.D., Krutskaya, T.M., Kuchumova, I.D., Matts, O.E., Tyurin, A.G., Emurlaeva, Yu.Yu., and Podryabinkin, S.I., Synthesis of polydisperse boron carbide and synthesis of a ceramic on its basis, Russ. J. Appl. Chem., 2019, vol. 92, no. 6, pp. 750–758. https://doi.org/10.1134/S1070427219060041

    Article  CAS  Google Scholar 

  63. Blott, S.J. and Pye, K., GRADISTAT: A grain size distribution and statistics package for the analysis of unconsolidated sediments, Earth Surf. Process. Landforms, 2001, vol. 26, no. 11, pp. 1237–1248. https://doi.org/10.1002/esp.261

    Article  Google Scholar 

  64. Bolgar, A.S., Turchanin, A.G., and Fesenko, V.V., Termodinamicheskie svoistva karbidov (Thermodynamic Properties of Carbides), Kiev: Naukova Dumka, 1973.

  65. Berger, L.-M., Stolle, S., Gruner, W., and Wetzig, K., Investigation of the carbothermal reduction process of chromium oxide by micro and lab-scale methods, Int. J. Refract. Met. Hard Mater., 2001, vol. 19, no. 2, pp. 109–121. https://doi.org/10.1016/S0263-4368(01)00003-8

    Article  CAS  Google Scholar 

  66. West, A.R., Solid State Chemistry and its Applications, Chichester: Wiley, 1984.

    Google Scholar 

  67. Saburov, V.P., Cherepanov, A.N., Zhukov, M.F., Galevskii, G.V., Krushenko, G.G., and Borisov, V.T., Plazmokhimicheskii sintez ul’tradispersnykh poroshkov i ikh primenenie dlya modifitsirovaniya metallov i splavov (Plasma-Chemical Synthesis of Ultrafine Powders and Their Application for the Modification of Metals and Alloys), Novosibirsk: Nauka, 1995.

  68. Nozdrin, I.V., Terent’eva, M.A., and Rudneva, V.V., Thermodynamic analysis of plasma synthesis of chromium diboride, Izv. Vyssh. Uchebn. Zaved., Chern. Metall., 2012, vol. 55, no. 10, pp. 7–11. https://doi.org/10.17073/0368-0797-2012-10-7-11

    Article  Google Scholar 

  69. Popovich, A.A., Reva, V.P., Vasilenko, V.N., Popovich, T.A., and Belous, O.A., Mechanochemical method of obtaining powders of high-melting compounds (review), Powder Metall. Met. Ceram., 1993, vol. 32, no. 2, pp. 131–136.

    Article  Google Scholar 

  70. Camurlu, H.E. and Maglia, F., Preparation of nano-size ZrB2 powder by self-propagating high-temperature synthesis, J. Eur. Ceram. Soc., 2009, vol. 29, pp. 1501–1506. https://doi.org/10.1016/j.jeurceramsoc.2008.09.006

    Article  CAS  Google Scholar 

  71. Wu, W.-W., Zhang, G.-J., and Sakka, Y., Nanocrystalline ZrB2 powders prepared by mechanical alloying, J. Asian Ceram. Soc., 2013, vol. 1, no. 3, pp. 304–307. https://doi.org/10.1016/j.jascer.2013.08.002

    Article  Google Scholar 

  72. Guo, S., Hu, C., and Kagava, Y., Mechanochemical processing of nanocrystalline zirconium diboride powder, J. Am. Ceram. Soc., 2011, vol. 94, no. 11, pp. 3643–3647. https://doi.org/10.1111/j.1551-2916.2011.04825.x

    Article  CAS  Google Scholar 

  73. Burlakova, A.G., Kravchenko, S.E., Domashnev, I.A., Vinokurov, A.A., Nadkhina, S.E., Volkova, L.S., and Shilkin, S.P., Special features of preparation of nanosized zirconium diboride powders of various dispersity, Russ. J. Gen. Chem., 2017, vol. 87, no. 5, pp. 906–911.

    Article  CAS  Google Scholar 

  74. Chen, B., Yang, L., Heng, H., Chen, J., Zhang, L., Xu, L., Qian, Y., and Yang, J., Additive-assisted synthesis of boride, carbide and nitride micro/nanocrystals, J. Solid State Chem., 2012, vol. 194, pp. 219–224. https://doi.org/10.1016/j.jssc.2012.05.032

    Article  CAS  Google Scholar 

  75. Millet, P. and Hwang, T., Preparation of TiB2 and ZrB2. Influence of a mechano-chemical treatment on the borothermic reduction of titania and zirconia, J. Mater. Sci., 1996, vol. 31, pp. 351–355. https://doi.org/10.1007/BF01139151

    Article  CAS  Google Scholar 

  76. Ran, S., van der Biest, O., and Vleugels, J., ZrB2 powders synthesis by borothermal reduction, J. Am. Ceram. Soc., 2010, vol. 93, no. 6, pp. 1586–1590. https://doi.org/10.1111/j.1551-2916.2010.03747.x

    Article  CAS  Google Scholar 

  77. Guo, W.-M. and Zhang, G.-J., New borothermal reduction route to synthesize submicrometric ZrB2 powders with low oxygen content, J. Am. Ceram. Soc., 2011, vol. 94, no. 11, pp. 3702–3705. https://doi.org/10.1111/j.1551-2916.2011.04869.x

    Article  CAS  Google Scholar 

  78. Zoli, L., Costa, A.L., and Sciti, D., Synthesis of nanosized zirconium diboride powder via oxide-borohydride solid state reaction, Scr. Mater., 2015, vol. 109, pp. 100–103. https://doi.org/10.1016/j.scriptamat.2015.07.029

    Article  CAS  Google Scholar 

  79. Karasev, A.I., Preparation of technical zirconium diboride by the carbothermic reduction of mixtures of zirconium and boron oxides, Sov. Powder Metall. Met. Ceram., 1973, vol. 12, no. 11, pp. 926–929.

    Article  Google Scholar 

  80. Jung, E.-Y., Kim, J.-H., Jung, S.-H., and Choi, S.-C., Synthesis of ZrB2 powder by carbothermal and borothermal reduction, J. Alloys Compd., 2012, vol. 538, pp. 164–168. https://doi.org/10.1016/j.jallcom.2012.05.076

    Article  CAS  Google Scholar 

  81. Zhang, Y., Li, R., Jiang, Y., Zhao, B., Duan, H., Li, J., and Feng, Z., Morphology evolution of ZrB2 nanoparticles synthesized by sol–gel method, J. Solid State Chem., 2011, vol. 184, no. 8, pp. 2047–2052. https://doi.org/10.1016/j.jssc.2011.05.040

    Article  CAS  Google Scholar 

  82. Cheng, G., An inorganic-organic hybrid precursor strategy for the synthesis of zirconium diboride powders, Int. J. Refract. Met. Hard Mater., 2013, vol. 36, pp. 149–153. https://doi.org/10.1016/j.ijrmhm.2012.08.008

    Article  CAS  Google Scholar 

  83. Gocmez, H., Tuncer, M., and Yeniceri, Y.S., Low temperature synthesis and pressureless sintering of nanocrystalline zirconium diboride powders, Ceram. Int., 2014, vol. 40, pp. 12117–12122. https://doi.org/10.1016/j.ceramint.2014.04.051

    Article  CAS  Google Scholar 

  84. Zhang, H., Dong, Z., Huang, Q., Li, Y., Zhang, X., Yuan, G., and Li, X., Preparation of zirconium diboride powders by co-pyrolysis of a zirconium-containing organic precursor and polyborazine using a solution based method, Ceram. Int., 2014, vol. 40, no. 9, pp. 15207–15214. https://doi.org/10.1016/j.ceramint.2014.07.002

    Article  CAS  Google Scholar 

  85. Ji, H., Yang, M., Li, M., Ji, G., Fan, H., and Sun, X., Low-temperature synthesis of ZrB2 nano-powders using a sorbitol modified sol-gel processing route, Adv. Powder Technol., 2014, vol. 25, no. 3, pp. 910–915. https://doi.org/10.1016/j.apt.2014.01.005

    Article  CAS  Google Scholar 

  86. Patra, N., Nasiri, N.A., Jayaseelan, D.D., and Lee, W.E., Synthesis, characterization and use of synthesized fine zirconium diboride as an additive for densification of commercial zirconium diboride powder, Ceram. Int., 2016, vol. 42, no. 8, pp. 9565–9570. https://doi.org/10.1016/j.ceramint.2016.03.037

    Article  CAS  Google Scholar 

  87. Khanra, A.K., Pathak, L.C., Mishra, S.K., and Godkhindi, M.M., Self-propagating-high-temperature synthesis (SHS) of ultrafine ZrB2 powder, J. Mater. Sci. Lett., 2003, vol. 22, pp. 1189–1191. https://doi.org/10.1023/A:1025336230885

    Article  CAS  Google Scholar 

  88. Setoudeh, N. and Welham, N.J., Formation of zirconium diboride (ZrB2) by room temperature mechanochemical reaction between ZrO2, B2O3 and Mg, J. Alloys Compd., 2006, vol. 420, nos. 1–2, pp. 225–228. https://doi.org/10.1016/j.jallcom.2005.07.083

    Article  CAS  Google Scholar 

  89. Khanra, A.K., Reaction chemistry during self-propagating high-temperature synthesis (SHS) of H3BO3–ZrO2–Mg system, Mater. Res. Bull., 2007, vol. 42, no. 12, pp. 2224–2229. https://doi.org/10.1016/j.materresbull.2007.01.016

    Article  CAS  Google Scholar 

  90. Akgün, B., Çamurlu, H.E., Topkaya, Y., and Sevinç, N., Mechanochemical and volume combustion synthesis of ZrB2, Int. J. Refract. Met. Hard Mater., 2011, vol. 29, no. 5, pp. 601–607. https://doi.org/10.1016/j.ijrmhm.2011.04.005

    Article  CAS  Google Scholar 

  91. Jalaly, M., Bafghi, M.Sh., Tamizifar, M., and Gotor, E.J., An investigation on the formation mechanism of nano ZrB2 powder by a magnesiothermic reaction, J. Alloys Compd., 2014, vol. 588, pp. 36–41. https://doi.org/10.1016/j.jallcom.2013.11.050

    Article  CAS  Google Scholar 

  92. Khanra, A.K., Pathak, L.C., and Godkhindi, M.M., Double SHS of ZrB2 powder, J. Mater. Process. Technol., 2008, vol. 202, nos. 1–3, pp. 386–390. https://doi.org/10.1016/j.jmatprotec.2007.09.007

    Article  CAS  Google Scholar 

  93. Cordova, S. and Shafirovich, E., Toward a better conversion in magnesiothermic SHS of zirconium diboride, J. Mater. Sci., 2018, vol. 53, pp. 13600–13606. https://doi.org/10.1007/s10853-018-2460-8

    Article  CAS  Google Scholar 

  94. Fang, Z., Fu, Z., Wang, H., Wang, W., and Zhang, Q., Preparation of ZrB2 ceramics by self-propagating high-temperature synthesis and hot pressing sintering, J. Wuhan Univ. Technol., Mater. Sci. Ed., 2005, vol. 20, no. 4, pp. 87–89. https://doi.org/10.1007/BF02841291

    Article  CAS  Google Scholar 

  95. Velashjerdi, M., Sarpoolaky, H., and Mirhabibi, A., Novel synthesis of ZrB2 powder by low temperature direct molten salt reaction, Ceram. Int., 2015, vol. 41, no. 10, pp. 12554–12559. https://doi.org/10.1016/j.ceramint.2015.06.068

    Article  CAS  Google Scholar 

  96. Guo, W.-M. and Zhang, G.-J. Reaction processes and characterization of ZrB2 powder prepared by boro/carbothermal reduction of ZrO2 in vacuum, J. Am. Ceram. Soc., 2009, vol. 92, no. 1, pp. 264–267. https://doi.org/10.1111/j.1551-2916.2008.02836.x

    Article  CAS  Google Scholar 

  97. Sonber, J.K., Murthi, T.S.R.Ch., Subramanian, C., Kumar, S., Fotedar, R.K., and Suri, A.K., Investigations on synthesis of ZrB2 and development of new composites with HfB2 and TiSi2, Int. J. Refract. Met. Hard Mater., 2011, vol. 29, no. 1, pp. 21–30. https://doi.org/10.1016/J.IJRMHM.2010.06.007

    Article  CAS  Google Scholar 

  98. Qiu, H.-Y., Guo, W.-M., Zou, J., and Zhang, G.-J., ZrB2 powders prepared by boro/carbothermal reduction of ZrO2: the effect of carbon source and reaction atmosphere, Powder Technol., 2012, vol. 217, pp. 462–466. https://doi.org/10.1016/j.powtec.2011.11.002

    Article  CAS  Google Scholar 

  99. Krutskii, Yu.L., Maksimovskii, E.A., Popov, M.V., Netskina, O.V., Krutskaya, T.M., Cherkasova, N.Yu., Kvashina, T.S., and Drobyaz, E.A., Synthesis of highly dispersed zirconium diboride for fabrication of special-purpose ceramic, Russ. J. Appl. Chem., 2017, vol. 90, no. 10, pp. 1579–1585. https://doi.org/10.1134/S1070427217100044

    Article  CAS  Google Scholar 

  100. Bai, L., Jin, H., Lu, C., Yuan, F., Huang, S., and Li, J., RF thermal plasma-assisted metallothermic synthesis of ultrafine ZrB2 powders, Ceram. Int., 2015, vol. 41, no. 6, pp. 7312–7317. https://doi.org/10.1016/j.ceramint.2015.02.024

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported as part of the NSTU development program, project no. C20-19.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu. L. Krutskii, T. S. Gudyma, K. D. Dyukova, R. I. Kuz’min or T. M. Krutskaya.

Additional information

Translated by S. Kuznetsov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krutskii, Y.L., Gudyma, T.S., Dyukova, K.D. et al. Properties, Applications, and Production of Diborides of Some Transition Metals: Review. Part 2. Chromium and Zirconium Diborides. Steel Transl. 51, 359–373 (2021). https://doi.org/10.3103/S096709122106005X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S096709122106005X

Keywords:

Navigation