Skip to main content
Log in

Nonuniformity of Acoustic Anisotropy of Thick-Sheet Steel

  • Published:
Steel in Translation Aims and scope

Abstract

We present the study results of acoustic anisotropy and anisotropy of the Young’s and shear moduli, the Poisson’s ratio, and transverse deformation along with nonuniformity of anisotropy over the area of the studied thick carbon St3sp steel sheet performed with the electromagnetic–acoustic technique of emission and detection of elastic waves. The longitudinal and shear waves of various polarizations are used. The dependences of the velocity of the SH-waves and the Poisson’s ratio on the sheet thickness have been obtained. We have presented the angular indicatrices of the change in the velocity of the SH-wave as a function of the polarization direction and indicatrices of the Poisson’s ratio along with the calculated values of the Poisson’s ratio weighted average over the sheet plane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Samokrutov, A.A., boborov, V.T., Shevaldykin, V.G., et al., The anisotropy of rolled products and its influence on the results of acoustic measurements, Kontrol. Diagn., 2003, no. 11, pp. 6–19.

  2. Hutchinson, B., Critical assessment 16: anisotropy in metals, Mater. Sci. Technol., 2015, vol. 31, no. 12, pp. 1393–1401.

    Article  CAS  Google Scholar 

  3. Bobrov, V.T., Bobrov, S.V., and Danilov, V.N., Propagation of pulses of shear elastic SH-polarization waves in a solid layer in a direction orthogonal to its surfaces, Russ. J. Nondestruct. Test., 2013, vol. 49, no. 8, pp. 436–445.

    Article  Google Scholar 

  4. Belyaev, A.K., Lobachev, A.M., Modestov, V.S., et al., Estimating the plastic strain with the use of acoustic anisotropy, Mech. Solids, 2016, vol. 51, no. 5, pp. 606–611.

    Article  Google Scholar 

  5. Gonchar, A.V., Mishakin, V.V., Klyushnikov, V.A., and Kurashkin, K.V., Variation of elastic characteristics of metastable austenite steel under cycling straining, Tech. Phys., 2017, vol. 62, no. 4, pp. 537–541.

    Article  CAS  Google Scholar 

  6. Mishakin, V.V., Klyushnikov, V.A., and Gonchar, A.V., Relation between the deformation energy and the Poisson ratio during cyclic loading of austenitic steel, Tech. Phys., 2015, vol. 60, no. 5, pp. 665–668.

    Article  CAS  Google Scholar 

  7. Grishchenko, A.I., Modestov, V.S., Polyanskiy, V.A., et al., Experimental investigation of the acoustic anisotropy field in the sample with a stress concentrator, St. Petersb. Polytech. Univ. J.: Phys. Math., 2017, no. 3, pp. 77–82.

  8. Murav’ev, V.V., Murav’eva, O.V., and Volkova, L.V., Influence of the mechanical anisotropy of thin steel sheets on the parameters of Lamb waves, Steel Transl., 2016, vol. 46, no. 10, pp. 752–756.

    Article  Google Scholar 

  9. Murav’eva, O.V. and Murav’ev, V.V., Methodological peculiarities of using SH- and Lamb waves when assessing the anisotropy of properties of flats, Russ. J. Nondestr. Test., 2016, vol. 52, no. 7, pp. 363–369.

    Article  Google Scholar 

  10. Mishakin, V., Gonchar, A., Kurashkin, K., and Kachanov, M., Prediction of fatigue life of metastable austenitic steel by a combination of acoustic and eddy current data, Int. J. Fatigue, 2020, vol. 141, pp. 105–846.

    Article  Google Scholar 

  11. Dixon, S., Fletcher, M.P., and Rowlands, G., The accuracy of acoustic birefringence shear wave measurements in sheet metal, J. Appl. Phys., 2008, vol. 104, pp. 114–901.

    Article  Google Scholar 

  12. Belyaev, A.K., Polyanskiy, V.A., Semenov, A.S., et al., Investigation of the correlation between acoustic anisotropy, damage and measures of the stress-strain state, Procedia Struct. Integr., 2017, vol. 6, pp. 201–207.

    Article  Google Scholar 

  13. Tretyakov, D., Belyaev, A., and Shaposhnikov, N., Acoustic anisotropy and localization of plastic deformation in aluminum alloys, Mater. Today, 2020, vol. 30, no. 3, pp. 413–416.

    CAS  Google Scholar 

  14. Roohnia, M., Tajdini, A., and Manouchehri, N., Assessing wood in sounding boards considering the ratio of acoustical anisotropy, NDT&E Int., 2011, vol. 44, no. 1, pp. 13–20.

    Article  Google Scholar 

  15. Busko, V.N. and Osipov, A.A., Application of magnetic noise method to control the mechanical anisotropy of ferromagnetic materials, Devices Methods of Meas., 2019, no. 10 (3), pp. 281–292.

  16. Tumanski, S., A method of testing of the plane distribution of anisotropy, IEEE Trans. Magn., 2002, vol. 38, no. 5, pp. 2808–2810.

    Article  Google Scholar 

  17. Tiunov, V.F. and Korzunin, G.S., Control of the heterogeneity of the magnetic permeability of sheet anisotropic electrical steel, Defektoskopiya, 2019, no. 3, pp. 46–49.

  18. Uglov, A.L. and Khlybov, A.L., On the inspection of the stressed state of anisotropic steel pipelines using the acoustoelasticity method, Russ. J. Nondestr. Test., 2015, vol. 51, no. 4, pp. 210–216.

    Article  Google Scholar 

  19. Dixon, S., Edwards, C., and Palmer, S.B., Texture measurements of metal sheets using wideband electromagnetic acoustic transducers, J. Phys. D: Appl. Phys., 2002, vol. 35, no. 8, pp. 816–824.

    Article  CAS  Google Scholar 

  20. Murav’ev, V.V., Yakimov, A.V., Volkova, L.V., and Platunov, A.V., Study of biaxial stress state in R65 rails by the acoustoelasticity method, Intell. Sist. Proizvod., 2019, vol. 17, no. 1, pp. 19–25.

    Article  Google Scholar 

  21. Murav’ev, V.V., Strizhak, V.A., and Khasanov, R.R., The software of the hardware complex for acoustic tensometry and structureroscopy of metal products, Intell. Sist. Proizvod., 2016, no. 2 (29), pp. 71–75.

  22. Volkova, L.V., Murav’eva, O.V., Murav’ev, V.V., and Buldakova, I.V., Device and methods for measuring of acoustic anisotropy and the residual stress in the main gas pipelines’ metal, Devices Methods of Meas., 2019, vol. 10, no. 1, pp. 42–52.

    Google Scholar 

  23. Chertenkov, M.V. and Ruzin, L.M., Prerequisites to complex use of standard and acoustic logging for the forecast of a Poisson’s ratio, Neft. Khoz., 2017, no. 1, pp. 16–18.

  24. Grechishnikov, F.V., Erisov, Ya.A., and Zaitsev, V.M., Calculation of the average anisotropy coefficient of sheet materials, Izv. Samar. Nauchn. Tsentra, Ross. Akad. Nauk, 2014, vol. 16, no. 4, pp. 154–157.

    Google Scholar 

  25. Botvina, L.R., Razurshenie: kinetika, mekhanizmy, obshchie zakonomernosti (Kinetics, Mechanisms, and General Pattern of Destruction), Moscow: Nauka, 2008.

  26. Potapova, L.B. and Yartsev, V.A., Mekhanika materialov pri slozhnom napryazhennom sostoyanii. Kak prognoziruyut predel’nye napryazheniya (Mechanics of Materials in Complex Stress Conditions. How to Predict the Ultimate Stresses), Moscow: Mashinostroenie, 2005.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. V. Volkova.

Additional information

Translated by N. Podymova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volkova, L.V., Murav’eva, O.V. & Murav’ev, V.V. Nonuniformity of Acoustic Anisotropy of Thick-Sheet Steel. Steel Transl. 51, 335–341 (2021). https://doi.org/10.3103/S0967091221050120

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0967091221050120

Keywords:

Navigation