Skip to main content
Log in

Deformation Behavior of a High-Entropy Al–Co–Cr–Fe–Ni Alloy Fabricated by Means of Wire-Arc Additive Manufacturing

  • Published:
Steel in Translation Aims and scope

Abstract

A nonequiatomic high-entropy alloy (HEA) of the Al–Co–Cr–Fe–Ni system has been obtained using a wire-arc additive manufacturing (WAAM) technique in an atmosphere of pure argon. The initial wire consists of three cores having different chemical composition: pure aluminum wire (99.95% of Al), chromium-nickel wire (20% of Cr, 80% of Ni), and a cobalt-alloy wire (17% of Co, 54% of Fe, and 29% of Ni). The obtained sample of the high-entropy alloy represents a parallelepiped consisting of 20 deposited layers in height and 4 layers in thickness. The alloy has the following elemental composition revealed by energy-dispersive X-ray spectroscopy: aluminum (35.67 ± 1.34 at %), nickel (33.79 ± 0.46 at %), iron (17.28 ± 1.83 at %), chromium (8.28 ± 0.15 at %) and cobalt (4.99 ± 0.09 at %). By using scanning electron microscopy, it has been revealed that the initial material has a dendritic structure and contains second-phase particles at the grain boundaries. The element distribution maps obtained by a mapping technique demonstrate that the grain bulk is enriched in aluminum and nickel, whereas the grain boundaries contain chromium and iron. Cobalt is distributed in the crystal lattice of the obtained HEA in a quasiuniform manner. It is shown that during tensile testing, the material destruction occurs according to an intragrain cleavage mechanism. It is revealed that brittle cracks are formed along the boundaries and at the junctions of grain boundaries, i.e., within the zones containing second-phase inclusions. It is suggested that the reasons for the increased fragility of HEA produced by wire-arc additive manufacturing consists in the uneven distribution of elements revealed in the microstructure of the alloy, and there are discontinuities having different shape and size in the bulk of the material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Lim, X., Mixed-up metals make for stronger, tougher, stretchier alloys, Nature, 2016, vol. 533, no. 7603, pp. 306–307. https://doi.org/10.1038/533306a

    Article  CAS  Google Scholar 

  2. Li, Z., Pradeep, K.G., Deng, Y., Raabe, D., and Tasan, C.C., Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off, Nature, 2016, vol. 534, no. 7606, pp. 227–230. https://doi.org/10.1038/nature17981

    Article  CAS  Google Scholar 

  3. Shaysultanov, D., Stepanov, N., Malopheyev, S., Vysotskiy, I., Sanin, V., Mironov, S., Kaibyshev, R., Salishchev, G., and Zherebtsov, S., Friction stir welding of a carbon-doped CoCrFeNiMn high-entropy alloy, Mater. Charact., 2018, vol. 145, pp. 353–361. https://doi.org/10.1016/j.matchar.2018.08.063

    Article  CAS  Google Scholar 

  4. Jin, B., Zhang, N., Yu, H., Hao, D., and Ma, Y., AlxCoCrFeNiSi high entropy alloy coatings with high microhardness and improved wear resistance, Surf. Coat. Technol., 2020, vol. 402, art. ID 126328. https://doi.org/10.1016/j.surfcoat.2020.126328

    Article  CAS  Google Scholar 

  5. Pogrebnjak, A.D., Bagdasaryan, A.A., Yakushchenko, I.V., and Beresnev, V.M., The structure and properties of high-entropy alloys and nitride coatings based on them, Russ. Chem. Rev., 2014, vol. 83, no. 11, pp. 1027–1061. https://doi.org/10.1070/RCR4407

    Article  CAS  Google Scholar 

  6. Klimova, M., Shaysultanov, D.G., Semenyuk, A., and Zherebtsov, S., Effect of carbon on recrystallised microstructures and properties of CoCrFeMnNi-type high-entropy alloys, J. Alloys Compd., 2020, vol. 851, art. ID 156839. https://doi.org/10.1016/j.jallcom.2020.156839

    Article  CAS  Google Scholar 

  7. Yeh, J.-W., Chen, S.-K., Lin, S.-J., Chin, T.-S., Shun, T.-T., Tsau, C.-H., and Chang, S.-Y., Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes, Adv. Eng. Mater., 2004, vol. 6, no. 5, pp. 299–303. https://doi.org/10.1002/adem.200300567

    Article  CAS  Google Scholar 

  8. Godlewska, E.M., Mitoraj-Królikowska, M., Czerski, J., Jawańska, M., Gein, S., and Hecht, U., Corrosion of Al(Co)CrFeNi high-entropy alloys, Front. Mater., 2020, vol. 7, art. ID 566336. https://doi.org/10.3389/fmats.2020.566336

    Article  Google Scholar 

  9. Zhang, Y., Zuo, T., Tang, Z., Gao, M.C., Dahmen, K.A., Liaw, P.K., and Lu, Z.P., Microstructures and properties of high-entropy alloys, Prog. Mater. Sci., 2014, vol. 61, pp. 1–93. https://doi.org/10.1016/j.pmatsci.2013.10.001

    Article  CAS  Google Scholar 

  10. Uporov, S.A., Ryltsev, R.E., Bykov, V.A., Estemirova, S.Kh., and Zamyatin, D.A., Microstructure, phase formation and physical properties of AlCoCrFeNiMn high-entropy alloy, J. Alloys Compd., 2020, vol. 820, art. ID 153228. https://doi.org/10.1016/j.jallcom.2019.153228

    Article  CAS  Google Scholar 

  11. Rogal, L., Szklarz, Z., Bobrowski, P., Kalita, D., Garzel, G., Tarasek, A., Kot, M., and Szlezynger, M., Microstructure and mechanical properties of Al–Co–Cr–Fe–Ni base high entropy alloys obtained using powder metallurgy, Met. Mater. Int., 2019, vol. 25, no. 4, pp. 930–945. https://doi.org/10.1007/s12540-018-00236-5

    Article  CAS  Google Scholar 

  12. Su, Y., Luo, S., and Wang, Z., Microstructure evolution and cracking behaviors of additively manufactured AlxCrCuFeNi2 high entropy alloys via selective laser melting, J. Alloys Compd., 2020, vol. 842, art. ID 155823. https://doi.org/10.1016/j.jallcom.2020.155823

    Article  CAS  Google Scholar 

  13. Shen, Q., Kong, X., and Chen, X., Fabrication of bulk Al–Co–Cr–Fe–Ni high-entropy alloy using combined cable wire arc additive manufacturing (CCW-AAM): microstructure and mechanical properties, J. Mater. Sci. Technol., 2021, vol. 74, pp. 136–142. https://doi.org/10.1016/j.jmst.2020.10.037

    Article  Google Scholar 

  14. Chen, X., Su, C., Wang, Y., Siddiquee, A.N., Konovalov, S., and Sing, R.A., Cold metal transfer (CMT) based wire and arc additive manufacture (WAAM) system, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech., 2018, vol. 12, no. 6, pp. 1278–1284. https://doi.org/10.1134/S102745101901004X

    Article  Google Scholar 

  15. Liu, K., Chen, X., Shen, Q., Pan, Z., Singh, R.A., Jayalakshmi, S., and Konovalov, S., Microstructural evolution and mechanical properties of deep cryogenic treated Cu–Al–Si alloy fabricated by Cold Metal Transfer (CMT) process, Mater. Charact., 2020, vol. 159, art. ID 110011. https://doi.org/10.1016/j.matchar.2019.110011

    Article  CAS  Google Scholar 

  16. Ngo, T.D., Kashani, A., Imbalzano, G., Nguyen, K.T.Q., and Hui, D., Additive manufacturing (3D printing): a review of materials, methods, applications and challenges, Composites, Part B, 2018, vol. 143, pp. 172–196. https://doi.org/10.1016/j.compositesb.2018.02.012

    Article  CAS  Google Scholar 

  17. Panin, A.V., Kazachenok, M.S., Panin, S.V., and Berto, F., Scale levels of quasi-static and dynamic fracture behavior of Ti-6Al-4V parts built by various additive manufacturing methods, Theor. Appl. Fract. Mech., 2020, vol. 110, art. ID 102781. https://doi.org/10.1016/j.tafmec.2020.102781

    Article  CAS  Google Scholar 

  18. Konovalov, S., Osintsev, K., Golubeva, A., Smelov, V., Ivanov, Yu., Chena, X., and Komissarova, I., Surface modification of Ti-based alloy by selective laser melting of Ni-based superalloy powder, J. Mater. Res. Technol., 2020, vol. 9, no. 4, pp. 8796–8807. https://doi.org/10.1016/j.jmrt.2020.06.016

    Article  CAS  Google Scholar 

  19. Sistla, H.R., Newkirk, J.W., and Liou, F.F., Effect of Al/Ni ratio, heat treatment on phase transformations and microstructure of AlxFeCoCrNi2–x (x = 0.3, 1) high entropy alloys, Mater. Des., 2015, vol. 81, pp. 113–121. https://doi.org/10.1016/j.matdes.2015.05.027

    Article  CAS  Google Scholar 

  20. Brooks, C.R. and McGill, B.L., The application of scanning electron microscopy to fractography, Mater. Charact., 1994, vol. 33, no. 3, pp. 195–243. https://doi.org/10.1016/1044-5803(94)90045-0

    Article  Google Scholar 

Download references

Funding

The work was financially supported by the Russian Science Foundation (project no. 20-19-00452).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu. F. Ivanov, K. A. Osintsev, V. E. Gromov, S. V. Konovalov or I. A. Panchenko.

Additional information

Translated by O. Polyakov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, Y.F., Osintsev, K.A., Gromov, V.E. et al. Deformation Behavior of a High-Entropy Al–Co–Cr–Fe–Ni Alloy Fabricated by Means of Wire-Arc Additive Manufacturing. Steel Transl. 51, 27–32 (2021). https://doi.org/10.3103/S0967091221010046

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0967091221010046

Keywords:

Navigation