Skip to main content
Log in

Analysis of the Possible Ways to Reduce Sulfur Content in Pig Iron

  • Published:
Steel in Translation Aims and scope

Abstract

With an approach to improve the strength performance and rate of blast-furnace smelting, especially when pulverized coal fuel is involved, the improvement of the hot coke strength has been considered. A crude oil additive is introduced into the coal charge in PJSC Novolipetsk steel mill (NLMK) to improve the quality of coke. This brings about an increase in coke sulfur resulting in the sulfur content growth in pig iron. Therefore, the task of finding ways to improve pig iron desulfurization in the blast furnace becomes important. The following are key factors that affect the pig iron desulfurization rate: slag basicity, the content of MgO oxide in the slag, the temperature of smelting products, and the slag viscosity. The purpose of this work deals with comparing the desulfurization efficiency through the improvement of the slag basicity and increasing the MgO content. An algorithm is developed based on known equations in order to achieve this goal. The increase of MgO content in the slag provides better input into pig iron desulfurization than the increase in slag basicity. In addition, an increase in MgO content by 1% results in growing slag to pig iron ratio amounting to 3.0 to 3.5 kg/MT. At the same time, an increase in basicity by 0.01 leads to an increase in the slag to pig iron ratio 4 to 5 kg/MT. Consequently, reducing the sulfur content in pig iron by controlling the slag basicity is less heat intensive. Recalculating to the reduced coke consumption rate, the difference in heat demand amounts to 0.4 to 0.5 kg/MT of pig iron. It is shown that the slag viscosity increases to a lesser extent than when caused by a basicity increase when MgO content grows in slag at a temperature of 1450°С.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Ishikawa, Y., Kase, M., Abe, Y., Ono, K., Sugata, M., and Nishi, T., Influence of post reaction strength of coke on blast furnace operation, Ironmaking Proc. Metall. Soc. AIME, 1983, vol. 42, pp. 357–368.

    CAS  Google Scholar 

  2. Bertling, H., Coal and coke for blast furnaces, ISIJ Int., 1999, vol. 39, no. 7, pp. 617–624.

    Article  CAS  Google Scholar 

  3. Chatterjee, A. and Prasad, H.N., Possibilities of tar addition to coal as a method for improving coke strength, Fuel, 1983, vol. 62, no. 5, pp. 591–600.

    Article  CAS  Google Scholar 

  4. Gonzalez-Cimas, M.J., Patrick, J.W., and Walker, A., Influence of pitch additions on coal carbonization: coke strength and structural properties, Fuel, 1987, vol. 66, no. 8, pp. 1019–1023.

    Article  CAS  Google Scholar 

  5. Liziero Ruggio da Silva, G., Souza, R., Belchior Reis, T., Ladeira Lima, I., Quintas, A., Amorim, L., Andretti Sabino Mota, M., and Brasil Dias Haneiko, N., Influence of coal tar addition on coke quality, Proc. AISTech’2018, Philadelphia, 2018, pp. 173–184.

  6. Geerdes, M., Chaigneau, R., Kurunov, I., Lingiardi, O., and Ricketts, J., Modern Blast Furnace Ironmaking, Amsterdam: IOS Press, 2015, 3rd ed.

    Google Scholar 

  7. Sharma, R., Tiwari, H., and Banerjee, P., Producing high coke strength after reactivity in stamp charged coke making, Coke Chem., 2014, vol. 57, no. 9, pp. 351–358.

    Article  Google Scholar 

  8. Stukov, M.I., Mamaev, M.V., Chernavin, A.Yu., et al., New coke for metallurgy, Chern. Metall., Byull. Nauchno-Tekh. Ekon. Inf., 2012, no. 5 (1349), pp. 35–37.

  9. Vegman, E.F., Domennoe proizvodstvo: Spravochnoe izdanie. Tom 1. Podgotovka rud i domennyi protsess (Blast-Furnace Production: Handbook, Vol. 1: Preparation of Ores and Blast Furnace Process), Moscow: Metallurgiya, 1989.

  10. Tovarovskii, I.G., Severnyuk, V.V., and Lyalyuk, V.P., Analiz pokazatelei i protsessov domennoi plavki (Analysis of Indicators and Processes of Blast-Furnace Smelting), Dnepropetrovsk: Porogi, 2000.

  11. Tovarovskii, I.G., Melting conditions of low silicon pig iron with low sulfur content, Stal’, 1992, no. 10, pp. 5–8.

  12. Skachko, A.S., Togobitskaya, D.N., and Bel’kova, A.I., Influence of charge composition on coefficients of elements distribution between products of blast furnace smelting, Metall. Protsess. Oborud., 2013, no. 4 (34), pp. 8–15.

  13. Dovgalyuk, B.P., Shcherbitskii, B.V., Yaroshenko, N.M., et al., Improving pig iron quality by slag composition stabilizing, Metall. Gornorudn. Prom-st’., 1978, no. 3, pp. 3–4.

  14. Druzhkov, V.G. and Prokhorov, I.E., Selection of the iron and slag tapping mode from hearth of blast furnaces in modern conditions, Vestn. Magnitogorsk. Gos. Tekh. Univ. im. G.N. Nosova, 2011, no. 4 (36), pp. 9–12.

  15. Shapovalov, A.N. and Druzhkov, V.G., Povyshenie effektivnosti desul’furatsii chuguna (Improvement of the Efficiency of Pig Iron Desulfurization), Magnitogorsk: Magnitogorsk. Gos. Tekh. Univ. im. G.N. Nosova, 2011.

  16. Babich, A., Senk, D., Gudenau, H.W., and Mavrommatis, K.Th., Ironmaking, Aachen: Inst. Eisenhuttenkunde RWTH, 2008.

    Google Scholar 

  17. Andersson, A.J., Andersson, A.M.T., and Jonsson, P.G., A study of some elemental distributions between slag and hot metal during tapping of the blast furnace, Steel Res. Int., 2004, vol. 75, no. 5, pp. 294–301.

    Article  CAS  Google Scholar 

  18. Hatch, G.G. and Chipman, J., Sulphur equilibria between iron blast furnace and metal, J. Miner., Met. Mater. Soc., 1949, vol. 1, pp. 274–284.

    Article  CAS  Google Scholar 

  19. Loginov, V.I., Berin, A.L., Lebed’, P.K., et al., Effect of magnesia on desulfurizing power of blast-furnace slags, Metallurgist, 1976, vol. 20, no. 5, pp. 315–317.

    Article  Google Scholar 

  20. Pehlke, R.D. and Fuwa, T., Control of sulphur in liquid iron and steel, Int. Met. Rev., 1985, vol. 30, no. 1, pp. 125–140.

    Article  CAS  Google Scholar 

  21. Zuo, H.B., Wang, C., Xu, C.F., Zhang, J.L., and Zhang, T., Effects of MnO on slag viscosity and wetting behavior between slag and refractory, Ironmaking Steelmaking, 2016, vol. 43, no. 1, pp. 56–63.

    Article  CAS  Google Scholar 

  22. Choi, J.Y., Kim, D.J., and Lee, H.G., Reaction kinetics of desulfurization of molten pig iron using CaO–SiO2–Al2O3–Na2O slag systems, ISIJ Int., 2001, vol. 41, no. 3, pp. 216–224.

    Article  CAS  Google Scholar 

  23. Spirin, N.A., Ipatov, Yu.V., Lobanov, V.N., et al., Informatsionnye sistemy v metallurgii (Information Systems in Metallurgy), Yekaterinburg: Ural. Gos. Tekh. Univ., 2001.

  24. Onorin, O.P., Spirin, N.A., Terent’ev, V.L., et al., Komp’yuternye metody modelirovaniya domennogo protsessa (Computer Modeling of Blast Furnace Process), Yekaterinburg: Ural. Gos. Tekh. Univ., 2005.

  25. Mitropol’skii, A.K., Tekhnika statisticheskikh vychislenii (Technique of Statistical Calculations), Moscow: Nauka, 1971, 2nd ed.

  26. Listopadov, V.S., Togobitskaya, D.N., Murav’eva, I.G., et al., Stabilization of slag mode of blast-furnace smelting in the operating conditions of BF no. 9 of JSC ArcelorMittal Kryviy Rih on a multicomponent charge, Chern. Metall., Byull. Nauchno-Tekh. Ekon. Inf., 2008, no. 8 (1304), pp. 14–20.

  27. Eyring, H., Yenderson, D., and Ree, T., Thermodynamic and transport properties of liquids, in Progress in International Research on Thermodynamic and Transport Properties, Amsterdam: Elsevier, 1962, pp. 340–351.

    Google Scholar 

  28. Roberto de Oliveira, J., Cristo Clem de Oliveira, H., Gambarine Soares, S., et al., Comparative study of hot metal desulfurization mixtures, Proc. AISTech’2018, Philadelphia, 2018, pp. 1034–1042.

  29. Izyumskii, N.N., Gordon, Ya.M., and Tretyak, A.A., Mathematical model and system for stabilizing the slag operating mode of blast furnace, Chern. Metall., Byull. Nauchno-Tekh. Ekon. Inf., 2017, no. 11, pp. 46–52.

  30. Gimmel’farb, A.A. and Kotov, K.I., Protsessy vosstanovleniya i shlakoobrazovaniya v domennykh pechakh (Reduction and Slagging Processes in Blast furnace), Moscow: Metallurgiya, 1982.

  31. Sukhareva, S.P., Gileva, L.Yu., and Zagainov, S.A. Analysis and forecast block for slag mode of blast furnace smelting, Izv. Vyssh. Uchebn. Zaved., Chern. Metall., 2004, no. 3, pp. 75–76.

  32. Voskoboinikov, V.G., Dunaev, N.E., Mikhalevich, A.G., et al., Svoistva zhidkikh domennykh shlakov (Properties of Liquid Blast Furnace Slags), Moscow: Metallurgiya, 1975.

  33. Yan, Z., Pang, Z., Lv, X.W., Qiu, G., and Bai, C., Effect of TiO2 on the viscous behavior of high alumina blast furnace slag, Proc. 9th Int. Symp. on High-Temperature Metallurgical Processing, Miner., Met. Mater. Ser. vol 10, Cham: Springer-Verlag, 2018, pp. 725–733.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. V. Myasoedov, S.V. Filatov, V. V. Panteleev, V. S. Listopadov or S. A. Zagainov.

Additional information

Translated by V. Vetrov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Myasoedov, S.V., Filatov, S., Panteleev, V.V. et al. Analysis of the Possible Ways to Reduce Sulfur Content in Pig Iron. Steel Transl. 50, 823–826 (2020). https://doi.org/10.3103/S0967091220120104

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0967091220120104

Keywords:

Navigation