Skip to main content
Log in

Research of the Microstructure of Fe30Cu70 Alloy Obtained by Different Technologies

  • Published:
Steel in Translation Aims and scope

Abstract

The influence of manufacturing material methods based on Fe30Cu70 on their microstructure and inclusion size, which is determined by the cooling rate of the melt during crystallization, is investigated. The line structure of the solid phase microstructure enriched in iron in the early stages of cooling can be traced with all the technologies for producing the Fe30Cu70 alloy. It was found that the higher the cooling rate, the less manifested was the network nature of the structure. An elemental analysis of the structure showed that the content of iron and copper in all structural components is greater than the maximum possible mutual solubility of the elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Avraamov, Yu.S. and Shlyapin, A.D., Novye kompozitsionnye materialy na osnove nesmeshivayushchikhsya komponentov: poluchenie, struktura, svoistva (New Composite Materials Based on Nonmixing Components: Production, Structure, and Properties), Moscow: Mosk. Gos. Ind. Univ., 1999.

  2. Sandin, A.C., Andrews, I.B., and Curreri, A.A., The influence of interfacial energies and gravitational levels on the directionally solidified structures in hypomonotectic alloys, Metall. Trans. A, 1988, vol. 19, nos. 7–12, pp. 2665–2669.

    Article  Google Scholar 

  3. Shahparast, F.A. and Davies, B.L., A study of the potential of sintered iron-lead and iron-lead-tin alloys as bearing material, Wear, 1978, vol. 50, no. 4, pp. 143–153.

    Article  Google Scholar 

  4. Mel’nikov, V.G., Yudina, T.F., and Aleshenkova, E.A., Introduction of lead into sintered iron-base antifriction materials by chemical means, Sov. Powder Metall. Met. Ceram., 1978, vol. 17, no. 3, pp. 249–251.

    Article  Google Scholar 

  5. Favstov, Yu.K., Shul’ga, Yu.I., and Rakhshtadt, A.G., Metallovedenie vysokodempfiruyushchikh splavov (Metal Science of Highly Damping Alloys), Moscow: Metallurgiya, 1980.

  6. Alekhin, V., Shilapin, A., Bulychev, S., and Koshkin, V., Determination of structural characteristics of materials using diagrams of continues indentation, Proc. ICCE/3 Third Int. Conf. on Composites Engineering, Abstract of Papers, New Orleans: Univ. of New Orleans, 1991, p. 3.

  7. Ghannami, M.E., Gómez-Polo, C., Rivero, G., and Hernando, A., Exchange correlation length and magnetoresistance in Fe–Cu and Fe–Cu–Ni melt-spun ribbons, Europhys. Lett., 1994, vol. 26, no. 9, pp. 701–707.

    Article  Google Scholar 

  8. Yang, X., Jiang, C., Zou, J., and Wang, X., Preparation and characterization of CuFe alloy ribbons, Rare Met. Mater. Eng., 2015, vol. 44, no. 12, pp. 2949–2953.

    Article  CAS  Google Scholar 

  9. Nozar, P., Jirman, L., and Sechovsky, V., On some magnetic properties of Fe alloys, J. Magn. Magn. Mater., 1990, vol. 83, nos. 1–3, pp. 463–464.

    Article  CAS  Google Scholar 

  10. Williamsa, J.M., Blythea, H.J., and Fedosyuk, V.M., An investigation of electrodeposited granular CuFe alloyed films, J. Magn. Magn. Mater., 1996, vol. 155, nos. 1–3, pp. 355–357.

    Article  Google Scholar 

  11. Linchevskii, B.V., Vakuumnaya metallurgiya stali i splavov (Vacuum Metallurgy of Steel and Alloys), Moscow: Metallurgiya, 1970.

  12. Nayana, N., Murtya, N., Ahay, K., et al., Processing and characterization of Al–Cu–Li alloy AA2195 undergoing scale up production through the vacuum induction melting technique, Mater. Sci. Eng., A, 2013, vol. 576, pp. 21–28.

    Article  Google Scholar 

  13. Merzhanov, A.G., Protsessy goreniya i sintez materialov (Combustion Processes and Synthesis of Materials), Chernogolovka: Inst. Strukt. Makrokinet. Probl. Materialoved., 1998.

  14. Sanin, V.N., Yukhvid, V.I., and Marzhanov, A.G., The influence of high-temperature melt infiltration under forces on SHS processes in gasless system, Int. J. Self-Propag. High-Temp. Synth., 2002, vol. 1, no. 11, pp. 31–44.

    Google Scholar 

  15. Sanin, V.N., Ikornikov, D.M., Andreev, D.E., and Yukhvid, V.I., Self-propagating high-temperature synthesis metallurgy of pipes with wear-resistant protective coating with the use of industrial wastes of metallurgy production, Russ. J. Non-Ferrous Met., 2013, vol. 54, no. 3, pp. 274–279.

    Article  Google Scholar 

  16. Sanin, V.V., Anikin, Yu.A., Yukhvid, V.I., and Filonov, M.R., Structural heredity of alloys produced by centrifugal SHS: Influence of remelting temperature, Int. J. Self-Propag. High-Temp. Synth., 2015, vol. 24, no. 4, pp. 211–215.

    Article  CAS  Google Scholar 

  17. Sanin, V.V., Filonov, M.R., Yukhvid, V.I., and Anikin, Y.A., Structural investigation of 70Cu/30Fe based cast alloy obtained combined use of centrifugal casting-SHS process and forging, MATEC Web Conf., 2017, vol. 129, pp. 1–4.

    Article  Google Scholar 

  18. Filonov, M.R., Anikin, Yu.A., and Levin, Yu.B., Teoreticheskie osnovy proizvodstva amorfnykh i nanokristallicheskikh splavov metodom sverkhbystroi zakalki (Theoretical Basis for Production of Amorphous and Nanocrystalline Alloys by Fast Quenching Method), Moscow: Mosk. Inst. Stali Splavov, 2006.

  19. Barabash, O.M. and Koval’, Yu.N., Struktura i svoistva metallov i splavov: Spravochnik (The Structure and Properties of Metals and Alloys: Handbook), Kiev: Naukova Dumka, 1986.

  20. The International Centre for Direction Data (ICDD). http://www.icdd.com. Accessed July 20, 2018.

  21. Gorelik, S.S., Skakov, Yu.A., and Rastorguev, L.N., Rentgenograficheskii i elektronnoopticheskii analiz (X‑ray and Electron-Optical Analysis), Moscow: Mosk. Inst. Stali Splavov, 2002.

  22. Umanskii, Ya.S., Skakov, Yu.A., and Ivanov, A.N., Kristallografiya, rentgenografiya i elektronnaya mikroskopiya (Crystallography, X-Ray Analysis, and Electron Microscopy), Moscow: Metallurgiya, 1982, pp. 192–195.

  23. Lykov, A.A., Teoriya teploprovodnosti (The Theory of Thermal Conductivity), Moscow: Vysshaya Shkola, 1966.

Download references

Funding

This work was supported by the Ministry of Education and Science, project no. 11.1397.2017/PCh.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Kostitsina.

Additional information

Translated by S. Avodkova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filonov, M.R., Sanin, V.V., Dzidziguri, E.L. et al. Research of the Microstructure of Fe30Cu70 Alloy Obtained by Different Technologies. Steel Transl. 49, 720–725 (2019). https://doi.org/10.3103/S0967091219100073

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0967091219100073

Keywords:

Navigation