Skip to main content
Log in

Simulation of Isothermal Austenite Transformation in Steel

  • Published:
Steel in Translation Aims and scope

Abstract

An algorithm is developed for simulation of phase transitions in the solid state. The algorithm permits the derivation of the corresponding kinetic curves for different initial conditions (quantity and configuration of new-phase nuclei, distance between the closest nuclei). The results of simulation are analyzed by means of the Johnson–Mehl–Avrami–Kolmogorov equation and the logistical function for determining the corresponding coefficients. Analogies are established between the results of simulation and the experimental kinetics of isothermal transformation of austenite in alloy steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lan, H.F., Du, L.X., Li, Q., et al., Improvement of strength-toughness combination in austempered low carbon bainitic steel: The key role of refining prior austenite grain size, J. Alloys Compd., 2017, vol. 710, pp. 702–710.

    Article  Google Scholar 

  2. Avishan, B., Tavakolian, M., and Yazdani, S., Two-step austempering of high performance steel with nanoscale microstructure, Mater. Sci. Eng., A, 2017, vol. 693, pp. 178–185.

    Google Scholar 

  3. Kobayashi, J., Ina, D., Yoshikawa, N., and Sugimoto, K., Effects of the addition of Cr, Mo and Ni on the retained austenite characteristics of 0.2% C–Si–Mn–Nb ultrahigh-strength TRIP-aided bainitic ferrite steels, ISIJ Int., 2012, vol. 52, pp. 1894–1901.

    Article  Google Scholar 

  4. Zhao, L., Qian, L., Meng, J., et al., Below-Ms austempering to obtain refined bainitic structure and enhanced mechanical properties in low-C high-Si/Al steels, Scr. Mater., 2016, vol. 112, pp. 96–100.

    Article  Google Scholar 

  5. Seo, E.J., Cho, L., Estrin, Y., and De Cooman, B.C., Microstructure-mechanical properties relationships for quenching and partitioning (Q&P) processed steel, Acta Mater., 2016, vol. 113, pp. 124–139.

    Article  Google Scholar 

  6. Clarke, A.J., Speer, J.G., Miller, M.K., et al., Carbon partitioning to austenite from martensite or bainite during the quench and partition (Q&P) process: a critical assessment, Acta Mater., 2008, vol. 56, pp. 16–22.

    Article  Google Scholar 

  7. Speer, J.G., Rizzo, F.C., Matlock, D.K., and Edmonds, D.V., The “quenching and partitioning” process: background and recent progress, Mater. Res., 2005, vol. 8, pp. 417–423.

    Article  Google Scholar 

  8. Cahn, R.W. and Haasen, P., Physical Metallurgy, Amsterdam: North-Holland, 1996, vol. 2.

    Google Scholar 

  9. Christian, J.W., The Theory of Transformations in Metal and Alloys, Oxford: Pergamon, 2002.

    Google Scholar 

  10. Kolmogorov, A.N., Statistical theory of metal crystallization, Izv. Akad. Nauk SSSR, 1937, no. 3, pp. 355–359.

    Google Scholar 

  11. Johnson, W.A. and Mehl, R.F., Reaction kinetics in process of nucleation and growth, Trans. AIME, 1939, vol. 135, pp. 416–468.

    Google Scholar 

  12. Avrami, M., Kinetics of phase change I. General theory, J. Chem. Phys., 1939, vol. 7, pp. 1103–1112.

    Article  Google Scholar 

  13. Avrami, M., Kinetics of phase change, II. Transformation-time relations for random distribution of nuclei, J. Chem. Phys., 1940, vol. 8, pp. 212–224.

    Article  Google Scholar 

  14. Avrami, M., Kinetics of phase change, III. Granulation, phase change and microsrtucture, J. Chem. Phys., 1941, vol. 9, pp. 177–184.

    Article  Google Scholar 

  15. Austin, J.B. and Rickett, R.L., Kinetics of the decomposition of austenite at constant temperature, Trans. Am. Inst. Min. Metall. Eng., 1939, vol. 964, pp. 1–20.

    Google Scholar 

  16. Cai, J. and Liu, R., Weibull mixture model for modeling nonisothermal kinetics of thermally stimulated solid-state reactions: application to simulated and real kinetic conversion data, J. Phys. Chem. B, 2007, vol. 111, pp. 10681–10686.

    Article  Google Scholar 

  17. Yudin, Yu.V., Maisuradze, M.V., and Kuklina, A.A., Describing the isothermal bainitic transformation in structural steels by a logistical function, Steel Transl., 2017, vol. 47, no. 3, pp. 213–218.

    Article  Google Scholar 

  18. Sun, N.X., Liu, X.D., and Lu, K., An explanation to the anomalous Avrami exponent, Scr. Mater., 1996, vol. 34, no. 8, pp. 1201–1207.

    Article  Google Scholar 

  19. Azghandi, S.H.M., Ahmadabadi, V.G., Raoofian, I., et al., Investigation on decomposition behavior of austenite under continuous cooling in vanadium microalloyed steel (30MSV6), Mater. Des., 2015, vol. 88, pp. 751–758.

    Article  Google Scholar 

  20. Jia, T., Militzer, M., and Liu, Z.Y., General method of phase transformation modeling in advanced high strength steels, ISIJ Int., 2010, vol. 50, no. 4, pp. 583–590.

    Article  Google Scholar 

  21. Lee, E.-S. and Kim, Y.G., A transformation kinetic model and its application to Cu-Zn-Al shape memory alloys—I. Isothermal conditions, Acta Metall. Mater., 1990, vol. 38, no. 9, pp. 1669–1676.

    Article  Google Scholar 

  22. Lebedev, P.D. and Uspenskii, A.A., RF Inventor’s Certificate no. 2017662074, 2017.

    Google Scholar 

  23. Gervas’ev, M.a., Maslova, O.V., Illarionova, S.M., et al., Kinetics of bainite transformation in Cr–Ni–Mo steels with the addition of aluminum and silicon, Izv. Vyssh. Uchebn. Zaved., Chern. Metall., 2014, vol. 57, no. 7, pp. 57–60.

    Google Scholar 

  24. Liu, Z., Olivares, R.O., Lei, Y., et al., Microstructural characterization and recrystallization kinetics modeling of annealing cold-rolled vanadium microalloyed HSLA steel, J. Alloys Compd., 2016, vol. 679, pp. 293–301.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Maisuradze.

Additional information

Original Russian Text © Yu.V. Yudin, A.A. Kuklina, P.D. Lebedev, M.V. Maisuradze, 2018, published in Stal’, 2018, No. 10, pp. 58–63.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yudin, Y.V., Kuklina, A.A., Lebedev, P.D. et al. Simulation of Isothermal Austenite Transformation in Steel. Steel Transl. 48, 684–689 (2018). https://doi.org/10.3103/S0967091218100133

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0967091218100133

Keywords

Navigation