Skip to main content
Log in

Influence of hydrogen on the localization of plastic strain in low-carbon steel

  • Published:
Steel in Translation Aims and scope

Abstract

The localization of plastic strain in the extension of 08ps low-carbon steel is compared after hot rolling and after electrolytic saturation with hydrogen by means of a three-electrode electrochemical cell. Analysis of the strain curves shows that they include a plasticity region, a stage of linear strain hardening, and a stage of parabolic strain hardening (Taylor hardening). Double-exposure speckle photography is used to visualize the localized strain zones. On that basis, the quantitative deformation characteristics may be obtained. In other words, the displacement-vector field in a plane sample under extension may be determined, and then the components of the plastic distortion tensor (the local elongation ε xx , shear ε xy , and rotation ω z ) may be calculated. The basic types of plastic flow localization are identified at different stages of strain hardening, and their parameters are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Poltoratskii, L.M., Gromov, V.E., and Chinokalov, V.Ya., Vodorod v stalyakh i splavakh (sovremennoe sostoyanie voprosa) (Hydrogen in Steels and Alloys: Modern State of the Problem), Novokuznetsk: Sib. Gos. Ind. Univ., 2008.

    Google Scholar 

  2. Hillier, E.M.K. and Robinson, M.J., Hydrogen embrittlement of high strength steel electroplated with zinccobalt alloys, Corros. Sci., 2004, vol. 46, pp. 715–727.

    Article  Google Scholar 

  3. Askari, A. and Das, S., Practical numerical analysis of a crack near a weld subjected to primary loading and hydrogen embrittlement, J. Mater. Process. Tech., 2006, vol. 173, pp. 1–13.

    Article  Google Scholar 

  4. Panagopoulos, C.N., El-Amoush, A.S., and Georgarakis, K.G., The effect of hydrogen charging on the mechanical behavior of a-brass, J. Alloys. Compd., 2005, vol. 392, pp. 159–164.

    Article  Google Scholar 

  5. Sofronis, P., Liang, Y., and Aravas, N., Hydrogen induced shear localization of plastic flow in metals and alloys, Eur. J. Mech. A-Solids, 2001, vol. 20, pp. 857–872.

    Article  Google Scholar 

  6. Kolachev, B.A., Vodorodnaya khrupkost’ metallov (Hydrogen Fragility of Metals), Moscow: Metallurgiya, 1985.

    Google Scholar 

  7. Ramunni, V.P., De Paiva Coelho, T., and de Miranda, P.E.V., Interaction of hydrogen with the microstructure of low-carbon steel, Mater. Sci. Eng., A, 2006, vols. 435–436, pp. 504–514.

    Article  Google Scholar 

  8. Hardie, D., Xu, J., Charles, E.A., and Wei, Y., Hydrogen embrittlement of stainless steel overlay materials for hydrogenators, Corros. Sci., 2004, vol. 46, pp. 3089–3100.

    Article  Google Scholar 

  9. Yagodzinskyy, Y., Saukkonen, T., Kilpeläinen, S., Tuomisto, F., and Hänninen, H., Effect of hydrogen on plastic strain localization in single crystals of austenitic stainless steel, Scr. Mater., 2010, vol. 62, pp. 155–158.

    Article  Google Scholar 

  10. Alefeld, G. and Völkl, J., Hydrogen in Metals, Vol. 1: Basic Properties, Vol. 2: Application-Oriented Properties, New York: Springer-Verlag, 1978.

    Google Scholar 

  11. Zuev, L.B., Danilov, V.I., and Barannikova, S.A., Fizika makrolokalizatsii plasticheskogo techeniya (Physics of Macrolocalisation of Plastic Flow), Novosibirsk: Nauka, 2008.

    Google Scholar 

  12. Braunshtein, O.E., Bazaikin, V.I., Gromov, V.E., and Dorofeev, V.V., Proizvodstvo listovogo prokata v valkakh peremennogo secheniya (Production of Sheet Metal in Rolled Sheets in Rollers of Variable Cross-Sections), Novokuznetsk: Sib. Gos. Ind. Univ., 2008.

    Google Scholar 

  13. Shlyakhova, G.V., Barannikova, S.A., Zuev, L.B., and Kosinov, D.A., Localization of plastic deformation in alloyed γ-iron single crystals electrolytically saturated with hydrogen, Steel Transl., 2013, vol. 43, no. 8, pp. 480–484.

    Article  Google Scholar 

  14. Jones, R. and Wykes, C., Holographic and Speckle Interferometry, New York: Cambridge Univ. Press, 1983.

    Google Scholar 

  15. Zuev, L.B., Gorbatenko, V.V., and Pavlichev, K.V., Elaboration of speckle photography techniques for plastic flow analyses, Meas. Sci. Technol., 2010, vol. 21, no. 5, pp. 054014–054019.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. A. Barannikova, L. B. Zuev, V. E. Gromov or S. V. Konovalov.

Additional information

Original Russian Text © S.A. Barannikova, D.A. Kosinov, L.B. Zuev, V.E. Gromov, S.V. Konovalov, 2016, published in Izvestiya Vysshikh Uchebnykh Zavedenii, Chernaya Metallurgiya, 2016, No. 12, pp. 891–895.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barannikova, S.A., Kosinov, D.A., Zuev, L.B. et al. Influence of hydrogen on the localization of plastic strain in low-carbon steel. Steel Transl. 46, 851–854 (2016). https://doi.org/10.3103/S0967091216120020

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0967091216120020

Keywords

Navigation