Skip to main content
Log in

Influence of the mechanical anisotropy of thin steel sheets on the parameters of Lamb waves

  • Published:
Steel in Translation Aims and scope

Abstract

The textural anisotropy in thin low-carbon 08ps and DC01 steel sheet is investigated by an electromagnetic–acoustic method. The sensitivity of Lamb waves of symmetric and antisymmetric zero-order modes to change in the elastic modulus of the medium is determined. The relation between the anisotropy of the properties and the mechanical characteristics of the metal sheet is established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Matyuk, V.F., Goncharenko, S.A., Hartmann, H., and Reichelt, H., Modern state of nondestructive testing of mechanical properties and stamping ability of steel sheets in a manufacturing technological flow, Russ. J. Nondestr. Test., 2003, vol. 39, no. 5, pp. 347–380.

    Article  Google Scholar 

  2. Mel’gui, M.A., Multiparameter methods in magnetic structuroscopy and instruments for their realization (review): I. Multiparameter magnetic structuroscopy by using parameters of a hysteresis loop measured with a closed electromagnet-article magnetic circuit, Russ. J. Nondestr. Test., 2015, vol. 51, no. 2, pp. 79–85.

    Article  Google Scholar 

  3. Skoblo, T.S. and Marchenko, A.Yu., Assessment of quality of pump-compressor pipes in operation using magnetic control by coercive force, Stal’, 2015, no. 4, pp. 62–64.

    Google Scholar 

  4. Sandomirskii, S.G., Influence of heat treatment on the residual magnetization of steel in partial magnetic hysteresis, Steel Transl., 2016, vol. 46, no. 4, pp. 290–294.

    Article  Google Scholar 

  5. Sandomirskii, S.G., Influence of heat treatment on the maximum differential magnetic permeability of steel, Steel Transl., 2015, vol. 45, no. 8, pp. 617–621.

    Article  Google Scholar 

  6. Uglov, A.L. and Khlybov, A.L., On the inspection of the stressed state of anisotropic steel pipelines using the acoustoelasticity method, Russ. J. Nondestr. Test., 2015, vol. 51, no. 4, pp. 210–216.

    Article  Google Scholar 

  7. Murav’ev, V.V., Murav’eva, O.V., Platunov, A.V., and Zlobin, D.V., Investigations of acoustoelastic characteristics of rod waves in heat-treated steel wires using the electromagnetic-acoustic method, Russ. J. Nondestr. Test., 2012, vol. 48, no. 8, pp. 447–456.

    Article  Google Scholar 

  8. Murav’ev, V.V., Murav’eva, O.V., Strizhak, V.A., Pryakhin, A.V., and Fokeeva, E.N., An analysis of the comparative reliability of acoustic testing methods of bar stock from spring steels, Russ. J. Nondestr. Test., 2014, vol. 50, no. 8, pp. 435–442.

    Article  Google Scholar 

  9. Murav’ev, V.V., Volkova, L.V., and Balobanov, E.N., Estimation of residual stresses in locomotive wheel treads using the acoustoelasticity method, Russ. J. Nondestr. Test., 2013, vol. 49, no. 7, pp. 382–386.

    Article  Google Scholar 

  10. Smirnov, A.N., Ababkov, N.V., Kozlov, E.V., et al., The microstructure, internal stress fields, and acoustic characteristics of the etals of destroyed steam turbine rotor, Izv. Vyssh. Uchebn. Zaved., Chern. Metall., 2014, vol. 57, no. 10, pp. 67–71.

    Article  Google Scholar 

  11. Bobrov, V.T., Bobrov, S.V., and Danilov, V.N., Propagation of pulses of shear elastic SH-polarization waves in a solid layer in a direction orthogonal to its surfaces, Russ. J. Nondestr. Test., 2013, vol. 49, no. 8, pp. 436–445.

    Article  Google Scholar 

  12. Dixon, S., Edwards, C., and Palmer, S.B., Texture measurements of metal sheets using wideband electromagnetic acoustic transducers, J. Phys. D: Appl. Phys., 2002, vol. 35, no. 8, pp. 816–824.

    Article  Google Scholar 

  13. Murayama, R. and Mizutani, K., Conventional electromagnetic acoustic transducer development for optimum Lamb wave modes, Ultrasonics, 2002, vol. 40, nos. 1–8, pp. 491–495.

    Article  Google Scholar 

  14. Zhai, G., Jiang, T., Kang, L., and Wang, S., Minimizing influence of multi-modes and dispersion of electromagnetic ultrasonic Lamb waves, IEEE Trans. Ultrason., Ferroelectr., Freq. Control, 2010, vol. 57, no. 12, pp. 2725–2733.

    Article  Google Scholar 

  15. Murav’eva, O.V. and Murav’ev, V.V., Methodological peculiarities of using SH- and Lamb waves when assessing the anisotropy of properties of flats, Russ. J. Nondestr. Test., 2016, vol. 52, no. 7, pp. 363–369.

    Article  Google Scholar 

  16. Gorlik, S.S., Skakov, Yu.A., and Rastorguev, L.N., Rentgenograficheskii i elektronnoopticheskii ananliz: uchebnoe posobie dlya vuzov (X-Ray and Electron Optical Analysis: Manual for Higher Education Institutions), Moscow: Mosk. Inst. Stali Splavov, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. V. Volkova.

Additional information

Original Russian Text © V.V. Murav’ev, O.V. Murav’eva, L.V. Volkova, 2016, published in Stal’, 2016, No. 10, pp. 75–79.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murav’ev, V.V., Murav’eva, O.V. & Volkova, L.V. Influence of the mechanical anisotropy of thin steel sheets on the parameters of Lamb waves. Steel Transl. 46, 752–756 (2016). https://doi.org/10.3103/S0967091216100077

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0967091216100077

Keywords

Navigation