Skip to main content
Log in

Modeling the atmospheric concentration of secondary steel-plant emissions

  • Published:
Steel in Translation Aims and scope

Abstract

A model is proposed for calculating the spatial distribution of secondary gaseous emissions around steel plants. The model is based on the maximum-risk principle. The following are the basic factors determining the maximum risk of exceeding the permissible concentration of the secondary emission: the formation of the emissions, the propagation of the emissions; and the falloff in concentration. Fundamental differences in the methods of calculating the propagation of primary and secondary gas emissions are noted. In particular, secondary emissions are generated not by point sources but over the whole region where the concentration of the primary emission exceeds its background value in the atmosphere. The concentration field of secondary sulfuricacid emissions is analyzed for a spatially distributed source on the basis of data from OAO Magnitogorskii Metallurgicheskii Kombinat. The H2SO4 concentration is plotted as a function of the distance from the source of the primary emission, for different wind speeds. The functional dependence of the H2SO4 concentration on the distance has a clear maximum. The position of the peak and the corresponding H2SO4 concentration may be determined for any wind speed if the mean power of the primary emission is known over the specified time interval.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Varenkov, A.N. and Kostikov, V.I., Khimicheskaya ekologiya i inzhenernaya bezopasnost’ metallurgicheskikh proizvodstv: uchebnoe posobie dlya vuzov (Chemical Ecology and Engineering Safety of Metallurgical Production: Manual for Higher Education Students), Moscow: Intermet Inzheniring, 2000.

    Google Scholar 

  2. Fedosov, A.A., Simulation of pollutant dispersion in the boundary layer of the atmosphere, Therm. Eng., 2006, vol. 53, no. 5, pp. 367–373.

    Article  Google Scholar 

  3. Yusfin, Yu.S., Leont’ev, L.I., and Chernousov, M.P., Promyshlennost’ i okruzhayushchaya sreda (Industry and Environment), Moscow: Akademkniga, 2004.

    Google Scholar 

  4. OND-86. Metodika rascheta kontsentratsii v atmosfernom vozdukhe vrednykh veshchestv, soderzhashchikhsya v vybrosakh predpriyatii (OND 86: Calculation of Atmospheric Concentration of Harmful Substances from Industrial Emissions), Leningrad: Gidrometeoizdat, 1987.

  5. Karabasov, Yu.S. and Chizhikova, V.M., Ekologiya i upravlenie prirodo pol’zovaniem, uchebnik dlya vuzov (Ecology and Environmental Management: Manual for Higher Education Students), Moscow: Mosk. Inst. Stali Splavov, 2006.

    Google Scholar 

  6. Petelin, A.L., Yusfin, Yu.S., Orelkina, D.I., and Vishnyakova, K.V., Predicting the risk of generalized air pollution by metallurgical enterprises, Steel Transl., 2013, vol. 43, no. 9, pp. 539–543.

    Article  Google Scholar 

  7. Orelkina, D.I., Petelin, A.L., and Polulyakh, L.A., Distribution of secondary gas emissions around steel plants, Steel Transl., 2015, vol. 45, no. 11, pp. 811–814.

    Article  Google Scholar 

  8. Isidorov, V.A., Ekologicheskaya khimiya: uchebnoe posobie dlya vuzov (Environmental Chemistry: Manual for Higher Education Students), St. Petersburg: Khimizdat, 2001.

    Google Scholar 

  9. Filov, V.A., Vrednye veshchestva v okruzhayushchei srede. Elementy I–IV grupp periodicheskoi sistemy i ikh neorganicheskie soedineniya (Harmful Substances in the Environment. Elements of I–IV Groups of the Periodic System and Their Inorganic Compounds), St. Petersburg: Professional, 2005.

    Google Scholar 

  10. Novikov, Z.Yu., Ekologiya, okruzhayushchaya sreda i chelovek (Ecology, Environment, and People), Moscow: Khimizdat, 1998.

    Google Scholar 

  11. Goldovskaya, L.F., Khimiya okruzhayushchei sredy (Environmental Chemistry), Moscow: Mir, 2007.

    Google Scholar 

  12. Vishnyakova, K.V., Petelin, A.L., and Yusphin, Yu.S., Diffusion spreading of the emitted metallurgical gas, Defect. Diffus. Forum, 2011, vols. 309–310, pp. 239–242.

    Article  Google Scholar 

  13. Social Responsibility Report of 2012, Magnitogorsk Iron and Steel Works. http://mmk.ru/about/responsibility/social_report/.

  14. Klimat Rossii: nauchno-prikladnoi spravochnik (Climate of Russia: Scientific Applied Handbook), Obninsk: Vseross. Nauchno-Issled. Inst. Gidrometeorol. Inform., 2014. http://aisori.meteo.ru/ClspR.

  15. Kvashnin, I.M., Predel’no dopustimye vybrosy predpriyatii v atmosferu. Rasseivanie i ustanovlenie normativov (Maximum Permissible Emissions of Enterprises in the Atmosphere. Dispersion and Setting Standards), Moscow: AVOK-Press, 2008.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. I. Orelkina.

Additional information

Original Russian Text © D.I. Orelkina, A.L. Petelin, L.A. Polulyakh, G.S. Podgorodetskii, 2016, published in Izvestiya Vysshikh Uchebnykh Zavedenii, Chernaya Metallurgiya, 2016, No. 5, pp. 300–305.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orelkina, D.I., Petelin, A.L., Polulyakh, L.A. et al. Modeling the atmospheric concentration of secondary steel-plant emissions. Steel Transl. 46, 309–312 (2016). https://doi.org/10.3103/S0967091216050107

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0967091216050107

Keywords

Navigation