Skip to main content
Log in

Influence of uniaxial extension of C01Mn2Si1 steel samples after heat treatment on the structural noise

  • Published:
Steel in Translation Aims and scope

Abstract

In ultrasonic structure analysis, a new approach is proposed to the assessment of metal structure in terms of the amplitude ratio of the mean structural noise and the secondary Rayleigh wave. The change in structural noise in the uniaxial extension of C01Mn2Si1 steel is investigated. The influence of mechanical stress and the structural state of the metal on the structural noise is demonstrated. The parameters of the structural noise are related to the structural state of C01Mn2Si1 steel. Experiments confirm that the sharp drop in structural noise at the yield point offers a sensitive method of detecting structural changes in the metal. Hence, measurement of the structural noise may be recommended for the detection of an early stage of damage accumulation in the metal—the stage of microdefect accumulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ivanov, Y.F., Gromov, V.E., Kosinov, D.A., Konovalov, S.V., and Barannikova, S.A., Structure of low-carbon steel sheet after scale removal, Steel Transl., 2014, vol. 44, no. 4, pp. 264–267.

    Article  Google Scholar 

  2. Ivanov, Yu.F., Gromov, V.E., Kosinov, D.A., Popova, N.A., and Konovalov, S.V., Scale levels of flats structure from low-carbon steel, Fiz. Mezomekh., 2013, vol. 16, no. 6, pp. 95–98.

    Google Scholar 

  3. Gromov, V.E., Ivanov, Yu.F., Kosterev, V.B., Efimov, O.Yu., Yur’ev, A.B., and Konovalov, S.V., Physical nature of low-carbon steel hardening at thermomechanical treatment, Chern. Met., 2013, no. 3 (975), pp. 25–31.

    Google Scholar 

  4. Gromov, V.E., Yur’ev, A.B., Morozov, K.V., and Ivanov, Yu.F., Mikrostruktura zakalennykh rel’sov (Microstructure of Hardened Rails), Novokuznetsk: Inter-Kuzbass, 2014.

    Google Scholar 

  5. Gromov, V.E., Yur’ev, A.B., Morozov, K.V., Volkov, K.V., and Ivanov, Yu.F., Structural and phase states of bulkquenched rail and differentially quenched rail, Steel Transl., 2014, vol. 44, no. 7, pp. 553–557.

    Article  Google Scholar 

  6. Murav’ev, V.V., Interrelationship of the velocity of an ultrasonic wave in steels and their heat treat cycles, Russ. J. Nondesrt. Test., 1989, vol. 25. no. 2. pp. 135–137.

    Google Scholar 

  7. Budenkov, G.A., Nedzvetskaya, O.V., Budenkov, B.A., Lebedeva, T.N., and Zlobin, D.V., Acoustic nondestructive testing of rods using multiple reflections, Russ. J. Nondestr. Test., 2004, vol. 40, no. 8, pp. 541–544.

    Article  Google Scholar 

  8. Budenkov, G.A., Nedzvetskaya, O.V., and Lebedeva, T.N., New progressive defectoscopy technology of drawling objects of metallurgical and oil industries, Tyazheloe Mashinostr., 2004, vol. 11, p. 18.

    Google Scholar 

  9. Murav’eva, O.V. and Zlobin, D.V., The acoustic path in the method of multiple reflections during nondestructive testing of linearly extended objects, Russ. J. Nondestr. Test., 2013, vol. 49, no. 2, pp. 93–99.

    Article  Google Scholar 

  10. Budenkov, G.A. and Nedzvetskaya, O.V., On calculation of the piezoelectric transducers of Rayleigh waves, Russ. J. Nondesrt. Test., 1992, no. 10, pp. 76–81.

    Google Scholar 

  11. Ermolov, I.N. and Lange, Yu.V., Nerazrushayushchii kontrol’: spravochnik. Tom 3. Ul’trazvukovoi kontrol’ (Nondestructive Control: Handbook, Vol. 3: Ultrasonic Check), Klyuev, V.V., Ed., Moscow: Mashinostroenie, 2004.

  12. Muravyev, V.V., Muravyeva, O.V., Baiteryakov, A.V., and Dedov, A.I., Testing method of acoustic structural noises of metals, Intellekt. Sist. Proizvod., 2013, no. 1, pp. 143–148.

    Google Scholar 

  13. Muravyev, V.V., Kotolomov, A.Yu., Baiteryakov, A.V., and Dedov, A.I., The methodology of determining the grain size by acoustic structural noise of steel, Izv. Vyssh. Uchebn. Zaved., Chern. Metall., 2014, vol. 57, no. 11, pp. 65–69.

    Article  Google Scholar 

  14. Barannikova, S.A., Kosinov, D.A., Nadezhkin, M.V., Lunev, A.G., Gorbatenko, V.V., Zuev, L.B., and Gromov, V.E., Regularities of macroscopic localization of plastic deformation in the stretching of a low-carbon steel, Russ. Phys. J., 2014, vol. 57, no. 3, pp. 396–402.

    Article  Google Scholar 

  15. Ivanov, Yu.F., Kosinov, D.A., Popova, N.A., Gromov, V.E., and Konovalov, S.V., Evolution of the structure and phase composition of low-carbon ferrite steel under conditions of hydrogen saturation and deformation, Bull. Russ. Acad. Sci.: Phys., 2014, vol. 78, no. 3, pp. 237–240.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Muraviev.

Additional information

Original Russian Text © V.V. Muraviev, S.V. Lenkov, A.I. Dedov, A.V. Baiteryakov, A.Yu. Kotolomov, 2016, published in “Izvestiya VUZ. Chernaya Metallurgiya,” 2016, No. 2, pp. 118–122.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muraviev, V.V., Lenkov, S.V., Dedov, A.I. et al. Influence of uniaxial extension of C01Mn2Si1 steel samples after heat treatment on the structural noise. Steel Transl. 46, 99–102 (2016). https://doi.org/10.3103/S0967091216020091

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0967091216020091

Keywords

Navigation