Skip to main content
Log in

Improving the production of superthin anisotropic electrical steel

  • Published:
Steel in Translation Aims and scope

Abstract

Electrical steel with scattered ribbed texture may be used as the initial material in the production of superthin anisotropic electrical steel with perfect (110)[001] texture by the Littmann method. The possibility of producing superthin anisotropic electrical steel with 0.5 wt % Cu is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kazadzhan, L.B., Magnitnye svoistva stalei i splavov (Magnetic Properties of Steel and Alloys), Durnev, V.D., Ed., Moscow: Nauka i Tekhnologii, 2000.

  2. Sokolov, B.K., Sbitnev, A.K., Gubernatorov, V.V., et al., On the influence of the annealing heating rate on the recrystallization texture of a deformed single crystal (110)[001] of 3% silicon iron, Textures Microstruct., 1995, vols. 26–27, pp. 427–443.

    Google Scholar 

  3. Rusakov, G.M., Lobanov, M.L., Redikul’tsev, A.A., and Belyaevskikh, A.S., Special misorientations and textural heredity in the commercial alloy Fe–3% Si, Phys. Met. Metallogr. (Transl. of Fiz. Met. Metalloved.), 2014, vol. 115, no. 8, pp. 775–785.

    Article  Google Scholar 

  4. Littmann, M.F., US 2473156, 1949.

  5. Abe, N., Twasaki, M., Kosuge, K., et al., Production of primary recrystallized Si–Fe foil with orientation near (110)[001] and magnetic properties, J. Mater. Eng. Perform., 1993, vol. 2, no. 3, pp. 393–398.

    Article  Google Scholar 

  6. Ushigami, Y., Okazaki, Y., Abe, N., et al., Magnetic properties of thin gauge 3% Si–Fe with (110)[001] orientation, J. Mater. Eng. Perform., 1994, vol. 4, no. 4, pp. 435–440.

    Article  Google Scholar 

  7. Ushigami, Y., Abe, N., Kousaka, S., et al., US Patent 5415703, 1995.

    Google Scholar 

  8. Xiuhua, G., Kemin, Q., and Chunlin, Q., Magnetic properties of grain oriented ultra-thin silicon steel sheets processed by conventional rolling and cross shear rolling, Mater. Sci. Eng., A, 2006, pp. 138–141.

    Google Scholar 

  9. Xiuhua, G., Kemin, Q., and Chunlin, Q., New process for production of ultra-thin grain oriented silicon steel, Rare Met., 2006, vol. 25, p. 454.

    Article  Google Scholar 

  10. Heo, N.H., Kim, S.B., Choi, Y.S., et al., Interfacial segregation, nucleation and texture development in 3% silicon steel, Acta Mater., 2003, vol. 51, pp. 4953–4964.

    Google Scholar 

  11. Heo, N.H., Soh, J.Y., Oh, J.M., and Kim, S.B., Influence of cold-rolling texture and heating rate on (110)[001] development in inhibitor-free 3% Si–Fe sheets, J. Magn. Magn. Mater., 2008, vol. 320, pp. 635–637.

    Article  Google Scholar 

  12. Heo, N.H., Soh, J.Y., Oh, J.M., and Kim, S.B., Preannealing and magnetic induction in inhibitor-free 3% Si–Fe strips, J. Magn. Magn. Mater., 2008, vol. 320, pp. 638–640.

    Article  Google Scholar 

  13. Anisotropic electrical bands, Ashinskiy metallurgical works. http://wwwametru/buyers/product/ steeltape/18/

  14. Lobanov, M.L., Redikul’tsev, A.A., and Rusakov, G.M., Electrotechnical anisotropic steel. Part 1. History of development, Met. Sci. Heat Treat., 2011, vol. 53, nos. 7–8, pp. 326–332.

    Article  Google Scholar 

  15. Lobanov, M.L., Rusakov, G.M., and Redikul’tsev, A.A., Effect of copper content, initial structure, and scheme of treatment on magnetic properties of ultra-thin grain oriented electrical steel, Phys. Met. Metallogr. (Transl. of Fiz. Met. Metalloved.), 2013, vol. 114, no. 7, pp. 559–565.

    Google Scholar 

  16. Lobanov, M.L., Rusakov, G.M. Redikul’tsev, A.A., and Kagan, I.V., Deformation-twinning-related features of primary recrystallization of (110)[001] single crystals of the Fe–3% Si–0.5% Cu alloy, Phys. Met. Metallogr. (Transl. of Fiz. Met. Metalloved.), 2011, vol. 111, no. 6, pp. 587–591.

    Article  Google Scholar 

  17. Homma, H., Hutchinson, B., and Kubota, T., The production mechanism of extensively sharp Goss orientation in HI–B material, J. Magn. Magn. Mater., 2003, vols. 254–255, pp. 331–333.

    Article  Google Scholar 

  18. Redikul’tsev, A.A. and Yurovskikh, A.S., Influence of copper on the deformation and primary recrystallization of Fe–3% Si alloy single crystals, Steel Transl., 2012, vol. 42, no. 5, pp. 399–404.

    Article  Google Scholar 

  19. Redikul’tsev, A.A., Lobanov, M.L., Rusakov, G.M., and Lobanova, L.V., Secondary recrystallization in Fe–3% Si alloy with (110)[001] single-component texture, Phys. Met. Metallogr. (Transl. of Fiz. Met. Metalloved.), 2013, vol. 114, no. 1, pp. 33–40.

    Article  Google Scholar 

  20. Dormer, D., Zaefferer, S., and Raabe, D., Retention of the Goss orientation between microbands during cold rolling of an Fe–3% Si single crystal, Acta Mater., 2007, vol. 55, no. 7, pp. 2519–2530.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Lobanov.

Additional information

Original Russian Text © A.S. Belyaevskikh, M.L. Lobanov, G.M. Rusakov, A.A. Redikul’tsev, 2015, published in “Stal’,” 2015, No. 12, pp. 63–67.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belyaevskikh, A.S., Lobanov, M.L., Rusakov, G.M. et al. Improving the production of superthin anisotropic electrical steel. Steel Transl. 45, 982–986 (2015). https://doi.org/10.3103/S0967091215120037

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0967091215120037

Keywords

Navigation