Skip to main content
Log in

Influence of interstitial carbon, nitrogen, and hydrogen on the plasticity and brittleness of steel

  • Published:
Steel in Translation Aims and scope

Abstract

The introduction of carbon, nitrogen, and hydrogen in steel is analyzed in terms of the electron structure, dislocation properties, hardening, and failure of the steel. The similarity and differences in the mechanical properties of the corresponding solution solutions are discussed in relation to the influence of these elements on the density of electron states at the Fermi level of iron and correspondingly on the concentration of free electrons. Carbon reduces the concentration of free electrons, while nitrogen and hydrogen have the opposite effect. Hence, the atomic interaction is changed: specifically, its covalent or metallic component will be intensified. The dislocation rate in deformation is analyzed in the approximation of mobile and immobile interstitial atoms. In the first case, the interstitial atoms obstruct dislocational slip; the mobility of the dislocations is determined by the binding enthalpy of the dislocations with impurity atoms. If the interstitial atoms may accompany dislocations, the atomic bond is locally changed in dislocational atmospheres. That affects the unit energy of the dislocations and the distance between them in the slip planes. On the basis of the research results, the significant similarity between the hydrogen brittleness of austenitic steel and the ductile–brittle transition in alloying with nitrogen is explained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Frehser, J. and Kubisch, Ch., BergHuettenmaenn. Monatsh., 1963, vol. 108, no. 11, pp. 369–380.

    Google Scholar 

  2. Norstroöm, L.A., Met. Sci., 1977, vol. 11, no. 6, pp. 208–212.

    Article  Google Scholar 

  3. Degallaix, S., Foct, J., and Hendry, A., Mater Sci. Technol., 1986, vol. 2, no. 9, pp. 946–950.

    Article  Google Scholar 

  4. Gavriljuk, V.G., Berns, H., Escher, Ch., Glavatskaya, N.I., Sozinov, A., and Petrov, Yu.N., Grain boundary strengthening in austenitic nitrogen steels, Mater. Sci. Forum, 1999, vol. 318, pp. 455–460.

    Article  Google Scholar 

  5. Sanbström, R. and Bergqvist, H., Scand. J. Metall., 1977, no. 6, pp. 156–169.

    Google Scholar 

  6. Nyilas, A., Obst, B., and Nakajima, H., in Proc. High Nitrogen Steels Conf., HNS-93, Gavriljuk, V.G. and Nadutov, V.M., Eds., Kiev: Inst. Met. Phys., 1993, pp. 339–344.

  7. Gavriljuk, V.G., Sozinov, A.L., Foct, J., Petrov, Yu.N., and Polushkin, Yu.A., Effect of nitrogen on the temperature dependence of the yield strength of austenitic steels, Acta Mater., 1998, vol. 46, no. 4, pp. 1157–1163.

    Article  Google Scholar 

  8. Uggowitzer, P.J. and Harzenmoser, M., in Proc. High Nitrogen Steels Conf., HNS-88, Foct, J. and Hendry, A., Eds., London: Inst. Met., 1989, pp. 174–179.

  9. Gavriljuk, V.G., Duz’, V.A., and Yephimenko, S.P., in Proc. High Nitrogen Steels Conf., HNS-90, Stein, G. and Witulsi, H., Eds., Dusseldorf: Stahl & Eisen, 1990, pp. 100–103.

  10. Nilsson, J.O., The effect of slip behavior on the low cycle fatigue behavior of two austenitic stainless steels, Scr. Metall., 1983, vol. 17, no. 5, pp. 593–596.

    Article  Google Scholar 

  11. Vogt, J.B., Magnin, T., and Foct, J., Fatigue Fract. Eng. Mater. Struct., 1993, vol. 16, no. 5, pp. 555–564.

    Article  Google Scholar 

  12. Briant, C.L., Effects of nitrogen and cold work on the sensitization of austenitic stainless steels, in Report NP-2457 on the Research Project 1574-1, New York: Gen. Electric Comp., 1982.

    Google Scholar 

  13. Mudali, U.K., Dayal, R.K., Gnanamoorthy, J.B., and Rodrigez, P., Relationship between pitting and intergranular corrosion of nitrogen-bearing austenitic stainless steels, ISIJ Int., 1996, vol. 36, no. 7, pp. 799–806.

    Article  Google Scholar 

  14. Azuma, S., Miyuki, H., and Kudo, T., Effect of alloying nitrogen on crevice corrosion of austenitic stainless steels, ISIJ Int., 1996, vol. 36, no. 7, pp. 793–798.

    Article  Google Scholar 

  15. Berns, H., Lueg, J., Trojan, W., and Zoch, H.W., in Proc. High Nitrogen Steels Conf., HNS-90, Stein, G. and Witulski, H., Eds., Dusseldorf: Stahl & Eisen, 1990, pp. 425–429.

  16. Gavriljuk, V.G., Shanina, B.D., and Berns, H., Ab initio development of a high-strength corrosion-resistant austenitic steel, Acta Mater., 2008, vol. 56, pp. 5071–5082.

    Article  Google Scholar 

  17. Tobler, R.L. and Meyn, D., Cleavage-like fracture along slip planes in Fe18Cr3Ni13Mn0.3N austenitic stainless steel at liquid helium temperature, Metall. Trans. A, 1988, vol. 19, no. 6, pp. 1626–1631.

    Article  Google Scholar 

  18. Tomota, Y., Xia, Y., and Inoue, K., Acta Mater., 1998, vol. 46, no. 5, pp. 1577–1587.

    Article  Google Scholar 

  19. Hohenberg, P. and Kohn, W., Phys. Rev. B, 1964, vol. 136, pp. 864–871.

    Article  Google Scholar 

  20. Kohn, W. and Sham, L.J., Phys. Rev. B, 1964, vol. 136, pp. 864–871.

    Article  Google Scholar 

  21. Blaha, P., Schwarz, K., Madsen, G.K.H., Kvasnicka, D., and Luitz, J., WIEN2k, An Augmented Plane Wave Local Orbitals Program for Calculating Crystal Properties, Wien, Austria: Karlheinz Schwarz Techn. Univ., 2001. ISBN 3-9501031-1-2

    Google Scholar 

  22. Teus, S.M., Shyvanyuk, V.N., Shanina, B.D., and Gavriljuk, V.G., Effect of hydrogen on electronic structure of fee iron in relation to hydrogen embrittlement of austenitic steels, Phys. Status Solidi A, 2007, vol. 204, no. 12, pp. 4249–4258.

    Article  Google Scholar 

  23. Gavriljuk, V.G., Shanina, B.D., Syvanyuk, V.N., and Teus, S.M., Electronic effect on hydrogen brittleness of austenitic steels, J. Appl. Phys., 2010, vol. 108, pp. 1–9.

    Article  Google Scholar 

  24. Berns, H., Gavriljuk, V.G., Riedner, S., and Tyshchenko, A., High strength stainless austenitic CrMnCN steels. Part I: alloy design and properties, Steel Res. Int., 2007, vol. 787, no. 9, pp. 710–715.

    Google Scholar 

  25. Berns, H., Gavriljuk, V.G., and Riedner, S. High Interstitial Stainless Austenitic Steels, Berlin: Springer-Verlag, 2013.

    Book  Google Scholar 

  26. Gavriljuk, V.G., Duz’, V.A., Efimenko, S.P., and Kvasnevskii, O.G., Interaction of carbon atoms and nitrogen with dislocations in austenite, Phys. Met. Metallogr., 1987, vol. 64, no. 6, pp. 1132–1135.

    Google Scholar 

  27. Atrens, A., Fiore, N.F., and Miura, K., J. Appl. Phys., 1977, vol. 48, no. 10, pp. 4247–4251.

    Article  Google Scholar 

  28. Gavriljuk, V.G., Kushnareva, N.P., and Prokopenko, V.G., On the nature of structural changes during the tempering of lower bainite, Phys. Met. Metallogr., 1976, vol. 42, no. 6, pp. 1288–1293.

    Google Scholar 

  29. Zelinski, A., Lunarska, E., and Smialowski, M., Acta Metall., 1977, vol. 25, pp. 305–308.

    Article  Google Scholar 

  30. Schoeck, G., Bisogni, E., and Shyne, J., Acta Metall., 1964, vol. 12, no. 12, pp. 1466–1468.

    Article  Google Scholar 

  31. Rivière, A., Amirault, J.P., and Woirgard, J., II Nuovo Cimento, 1976, vol. 33, pp. 398–407.

    Article  Google Scholar 

  32. Schoeck, G., Acta Metall., 1963, vol. 11, no. 6, pp. 617–622.

    Article  Google Scholar 

  33. Seeger, A., Phys. Status Solid. A, 1979, vol. 55, no. 2, pp. 457–468.

    Article  Google Scholar 

  34. Takita, K. and Sakamoto, K., Scr. Metall., 1976, vol. 10, pp. 399–403.

    Article  Google Scholar 

  35. Gavriljuk, V.G., Shanina, B.D., Shyvanyuk, V.N., and Teus, S.M., Hydrogen embrittlement of austenitic steels: electron approach, Corros. Rev., 2013, vol. 31, no. 2, pp. 33–50.

    Article  Google Scholar 

  36. Birnbaum, H.K. and Sofronis, P., Hydrogen-enhanced localized plasticity-a mechanism for hydrogen-related fracture, Mater. Sci. Eng., A, 1994, vol. 176, pp. 191–202.

    Article  Google Scholar 

  37. Larikov, L.N., Fal’chenko, V.M., Mazanko, V.F., Gurevich, S.M., Kharchenko, G.I., and Ignatenko, A.I., Dokl. Akad. Nauk SSSR, 1975, vol. 221, no. 5, pp. 1073–1075.

    Google Scholar 

  38. Pogorelov, A.E., Ryaboshapka, K.P., and Zhuravlev, A.F., Mass transfer mechanism in real crystals by pulsed laser irradiation, J. Appl. Phys., 2002, vol. 92, p. 5766.

    Article  Google Scholar 

  39. Harzenmoser, M.A.E., Massive aufgestickte anustenitisch–rostfreie Sraähle und Duplexstaähle, Doctoral Thesis, Zuärich: Eidgenoössische Tech. Hochschule, 1990.

    Google Scholar 

  40. Gavriljuk, V.G. and Berns, H., in High Nitrogen Steels, Berlin: Springer-Verlag, 1999.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Gavriljuk.

Additional information

Original Russian Text © V.G. Gavriljuk, 2015, published in “Izvestiya VUZ. Chernaya Metallurgiya,” 2015, No. 10, pp. 761–768.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gavriljuk, V.G. Influence of interstitial carbon, nitrogen, and hydrogen on the plasticity and brittleness of steel. Steel Transl. 45, 747–753 (2015). https://doi.org/10.3103/S0967091215100046

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0967091215100046

Keywords

Navigation