Skip to main content
Log in

Transient and residual stress in rollers quenched after inductive heating

  • Published:
Steel in Translation Aims and scope

Abstract

A physicomathematical model is proposed for the thermal stress of steel rollers quenched after inductive heating. The model involves numerical solution of a system of interrelated nonlinear heat-conduction and thermoviscoelasticity equations. It takes account of the kinetics of austenite decomposition and the specifics of inductive heating. The validity of the model is confirmed by comparing the calculated stress in a roller (diameter 210 mm) with experimental data obtained by the Saks method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Petrov, A.S. and Karmanov, A.I., Proizvodstvo valkov kholodnoi prokatki (Roller Production for Cold-Rolling Mills), Moscow: Metallurgizdat, 1962.

    Google Scholar 

  2. Gedson, M.V., Sobol’, G.P., and Paisov, I.V., Termicheskaya obrabotka valkov kholodnoi prokatki (Heat Treatment of Rollers for Cold-Rolling Mills), Moscow: Metallurgiya, 1973.

    Google Scholar 

  3. Vafin, R.K., Pokrovskii, A.M., and Leshkovtsev, V.G., Prochnost’ termoobrabatyvaemykh prokatnykh valkov (Strength of Heat-Treated Rollers), Moscow: MGTU im. N.E. Baumana, 2004.

    Google Scholar 

  4. Kuvaldin, A.B. and Lepeshkin, A.R., Skorostnye rezhimy induktsionnogo nagreva i termonapryazheniya v izdeliyakh (Fast Inductive Heating and Thermal Stress), Novosibirsk: Metallurgizdat, 2006.

    Google Scholar 

  5. Il’yushin, A.A. and Pobedrya, B.E., Osnovy matematicheskoi teorii termovyazkouprugosti (Fundamentals of the Mathematical Theory of Thermoviscoelasticity), Moscow: Nauka, 1970.

    Google Scholar 

  6. Golovin, G.F. and Zamyatin, M.M., Vysokochastotnaya termicheskaya obrabotka (High-Frequency Heat Treatment), Leningrad: Mashinostroenie, 1990, 3rd ed.

    Google Scholar 

  7. Novatskii, V., Voprosy termouprugosti (Thermoelasticity), Moscow: Izd. AN SSSR, 1962.

    Google Scholar 

  8. Dergunov, I.D., Determining the relaxation period of carbon steel and nonferrous metals, Zh. Tekh. Fiz., 1951, vol. 21, no. 12, pp. 1526–1534.

    Google Scholar 

  9. Schastlivtsev, V.M., Mirzaev, D.V., Yakovleva, I.L., et al., Perlit v uglerodistkh stalyakh (Pearlite in Carbon Steel), Yekaterinburg: URO RAN, 2006.

    Google Scholar 

  10. Kostinen, D.P. and Marburger, R.E., A general equation prescribing the extent of austenite-martensite transformation in pure iron-carbon alloys and plain carbon steel, Acta Metallurgica, 1959, vol. 57, pp. 59–60.

    Article  Google Scholar 

  11. Umemoto, M., Horiuchi, K., and Tamura, I., Transformation kinetics of bainite during isothermal holding and continuous cooling, Trans. ISIJ., 1982, vol. 22, pp. 854–861.

    Article  Google Scholar 

  12. Borisenko, V.G., Bozhko, S.A., and Serebrennikov, A.M., Quenched layer of rollers for cold rolling of steel strip, Stal’, 1962, no. 5, pp. 452–454.

    Google Scholar 

  13. Sklyuev, P.V. and Petrov, B.D., Quality of rollers for cold-rolling mills, Stal’, 1963, no. 7, p. 651.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Samoilovich.

Additional information

Original Russian Text © Yu.A. Samoilovich, 2015, published in “Stal’,” 2015, No. 1, pp. 51–56.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samoilovich, Y.A. Transient and residual stress in rollers quenched after inductive heating. Steel Transl. 45, 73–79 (2015). https://doi.org/10.3103/S0967091215010118

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0967091215010118

Keywords

Navigation