Skip to main content
Log in

Peptide Pharmaceuticals: Opportunities, Prospects, and Limitations

  • Reviews
  • Published:
Molecular Genetics, Microbiology and Virology Aims and scope Submit manuscript

Abstract

Currently, a number of peptide pharmaceuticals are widely used in medical practice, but the market size of such drugs remains relatively small. However, in the coming years, one can expect a significant increase in interest in peptide pharmaceuticals, which is primarily due to their low toxicity and wide range of possible molecular targets. The results obtained in recent years allow us to take a new approach to the development of such drugs, which will make it possible to expand the range of possible applications of peptide drugs and improve their efficiency and usability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Roth, J., Qureshi, S., Whitford, I., et al., Insulin’s discovery: New insights on its ninetieth birthday, Diabetes/Metab. Res. Rev., 2012, vol. 28, no. 4, pp. 293–304.

    Article  CAS  Google Scholar 

  2. Insulin: Almost a century of lifesaving, Consult. Pharm., 2017, vol. 32, no. 4, pp. 190–198.

    Google Scholar 

  3. Nomenclature and symbolism for amino acids and peptides, Pure Appl. Chem., 1984, vol. 56, no. 5, p. 30.

    Google Scholar 

  4. Porcellati, F., Rossetti, P., Busciantella, N.R., et al., Comparison of pharmacokinetics and dynamics of the long–acting insulin analogs glargine and detemir at steady state in type 1 diabetes: A double–blind, randomized, crossover study, Diabetes Care, 2007, vol. 30, no. 10, pp. 2447–2452.

    Article  PubMed  CAS  Google Scholar 

  5. Fosgerau, K. and Hoffmann, T., Peptide therapeutics: Current status and future directions, Drug Discovery Today, 2015, vol. 20, no. 1, pp. 122–128.

    Article  PubMed  CAS  Google Scholar 

  6. Elkinton, J.R. and Hunt, A.D., Effects of pituitary adrenocorticotropic hormone therapy, JAMA, J. Am. Med. Assoc., 1949, vol. 141, no. 18, pp. 1273–1279.

    Article  CAS  Google Scholar 

  7. Song, J.M., Hahn, J., Kim, S.H., and Chang, M.J., Efficacy of treatments for infantile spasms: A systematic review, Clin. Neuropharmacol., 2017, vol. 40, no. 2, pp. 63–84.

    Article  PubMed  CAS  Google Scholar 

  8. Fu, J., Song, H., Zhou, M., et al., Progesterone receptor modulators for endometriosis, Cochrane Database Syst. Rev., 2017, vol. 7, p. CD009881.

    Google Scholar 

  9. Hoda, M.R., Kramer, M.W., Merseburger, A.S., and Cronauer, M.V., Androgen deprivation therapy with Leuprolide acetate for treatment of advanced prostate cancer, Expert Opin. Pharmacother., 2017, vol. 18, no. 1, pp. 105–113.

    Article  PubMed  CAS  Google Scholar 

  10. Bowen, R.L., Perry, G., Xiong, C., et al., A clinical study of lupron depot in the treatment of women with Alzheimer’s disease: Preservation of cognitive function in patients taking an acetylcholinesterase inhibitor and treated with high dose lupron over 48 weeks, J. Alzheimer’s Dis., 2015, vol. 44, no. 2, pp. 549–560.

    Article  CAS  Google Scholar 

  11. Filatova, Yu., Global state of pharmaceutical market, Izv. Tul. Gos. Univ. Ekon. Yuridichesk. Nauki, 2016, vol. 1, no. 1, p. 8.

    Google Scholar 

  12. Lau, J.L. and Dunn, M.K., Therapeutic peptides: historical perspectives, current development trends, and future directions, Bioorg. Med. Chem., 2017, vol. 26, no. 10, pp. 2700–2707.

    Article  PubMed  CAS  Google Scholar 

  13. Diao, L. and Meibohm, B., Pharmacokinetics and pharmacokinetic–pharmacodynamic correlations of therapeutic peptides, Clin. Pharmacokinet., 2013, vol. 52, no.10, pp. 855–868.

  14. De Bruyne, P., De Guchtenaere, A., Van Herzeele, C., et al., Pharmacokinetics of desmopressin administered as tablet and oral lyophilizate formulation in children with monosymptomatic nocturnal enuresis, Eur. J. Pediatr., 2014, vol. 173, no. 2, pp. 223–228.

    Article  PubMed  CAS  Google Scholar 

  15. Okada, A., Ushigome, H., Kanamori, M., et al., Population pharmacokinetics of cyclosporine A in Japanese renal transplant patients: comprehensive analysis in a single center, Eur. J. Clin. Pharmacol., 2017, vol. 73, no. 9, pp. 1111–1119.

    Article  PubMed  CAS  Google Scholar 

  16. Lin, J.H., Pharmacokinetics of biotech drugs: Peptides, proteins and monoclonal antibodies, Curr. Drug Metab., 2009, vol. 10, no.7, pp. 661–691.

    Google Scholar 

  17. Handelsman, D.J. and Swerdloff, R.S., Pharmacokinetics of gonadotropin–releasing hormone and its analogs, Endocr. Rev., 1986, vol. 7, no. 1, pp. 95–105.

    Article  PubMed  CAS  Google Scholar 

  18. Wang, J., Wu, D., and Shen, W.C., Structure–activity relationship of reversibly lipidized peptides: Studies of fatty acid–desmopressin conjugates, Pharm. Res., 2002, vol. 19, no. 5, pp. 609–614.

    Article  PubMed  CAS  Google Scholar 

  19. Werle, M. and Bernkop–Schnurch, A., Strategies to improve plasma half life time of peptide and protein drugs, Amino Acids, 2006, vol. 30, no. 4, pp. 351–367.

    Article  PubMed  CAS  Google Scholar 

  20. Sato, A.K., Viswanathan, M., Kent, R.B., and Wood, C.R., Therapeutic peptides: Technological advances driving peptides into development, Curr. Opin. Biotechnol., 2006, vol. 17, no. 6, pp. 638–642.

    Article  PubMed  CAS  Google Scholar 

  21. Ferdinandi, E.S., Brazeau, P., High, K., et al., Nonclinical pharmacology and safety evaluation of TH9507, a human growth hormone–releasing factor analogue, Basic Clin. Pharmacol. Toxicol., 2007, vol. 100, no. 1, pp. 49–58.

    Article  PubMed  CAS  Google Scholar 

  22. Agerso, H., Seiding Larsen, L., Riis, A., et al., Pharmacokinetics and renal excretion of desmopressin after intravenous administration to healthy subjects and renally impaired patients, Br. J. Clin. Pharmacol., 2004, vol. 58, no. 4, pp. 352–358.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Raun, K., Hansen, B.S., Johansen, N.L., et al., Ipamorelin, the first selective growth hormone secretagogue, Eur. J. Endocrinol., 1998, vol. 139, no. 5, pp. 552–561.

    Article  PubMed  CAS  Google Scholar 

  24. Goodwin, D., Simerska, P., and Toth, I., Peptides as therapeutics with enhanced bioactivity, Curr. Med. Chem., 2012, vol. 19, no. 26, pp. 4451–4461.

    Article  PubMed  CAS  Google Scholar 

  25. Houston, M.E., Jr., Campbell, A.P., Lix, B., et al., Lactam bridge stabilization of alpha–helices: The role of hydrophobicity in controlling dimeric versus monomeric alpha–helices, Biochemistry, 1996, vol. 35, no. 31, pp. 10041–10050.

    Article  PubMed  CAS  Google Scholar 

  26. Bird, G.H., Madani, N., Perry, A.F., et al., Hydrocarbon double–stapling remedies the proteolytic instability of a lengthy peptide therapeutic, Proc. Natl. Acad. Sci. U. S. A., 2010, vol. 107, no. 32, pp. 14093–14098.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Henchey, L.K., Jochim, A.L., and Arora, P.S., Contemporary strategies for the stabilization of peptides in the alpha–helical conformation, Curr. Opin. Chem. Biol., 2008, vol. 12, no. 6, pp. 692–697.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Grigoryev, Y., Stapled peptide to enter human testing, but affinity questions remain, Nat. Med., 2013, vol. 19, no. 2, p. 120.

    Article  PubMed  CAS  Google Scholar 

  29. Brookes, M.E., Eldabe, S., and Batterham, A., Ziconotide monotherapy: A systematic review of randomized controlled trials, Curr. Neuropharmacol., 2017, vol. 15, no. 2, pp. 217–231.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Cho, E.H., Lim, J.C., Lee, S.Y., and Jung, S.H., An assessment tumor targeting ability of (177)Lu labeled cyclic CCK analogue peptide by binding with cholecystokinin receptor, J. Pharmacol. Sci., 2016, vol. 131, no. 3, pp. 209–214.

    Article  PubMed  CAS  Google Scholar 

  31. van Witteloostuijn, S.B., Pedersen, S.L., and Jensen, K.J., Half–life extension of biopharmaceuticals using chemical methods: Alternatives to PEGylation, ChemMed–Chem, 2016, vol. 11, no. 22, pp. 2474–2495.

    Google Scholar 

  32. Chanson, P., Timsit, J., and Harris, A.G., Octreotide, analog of somatostatin. Pharmacological properties and therapeutic applications in pituitary endocrine tumors, Presse Med., 1993, vol. 22, no. 40, pp. 2009–2016.

    PubMed  CAS  Google Scholar 

  33. Malm–Erjefalt, M., Bjornsdottir, I., Vanggaard, J., et al., Metabolism and excretion of the once–daily human glucagon–like peptide–1 analog liraglutide in healthy male subjects and its in vitro degradation by dipeptidyl peptidase IV and neutral endopeptidase, Drug Metab. Dispos., 2010, vol. 38, no. 11, pp. 1944–1953.

    Article  PubMed  CAS  Google Scholar 

  34. Lindgren, J., Refai, E., Zaitsev, S.V., et al., A GLP–1 receptor agonist conjugated to an albumin–binding domain for extended half–life, Biopolymers, 2014, vol. 102, no. 3, pp. 252–259.

    Article  PubMed  CAS  Google Scholar 

  35. Poole, R.M. and Nowlan, M.L., Albiglutide: First global approval, Drugs, 2014, vol. 74, no. 8, pp. 929–938.

    Article  PubMed  CAS  Google Scholar 

  36. Angelini, A., Morales–Sanfrutos, J., Diderich, P., et al., Bicyclization and tethering to albumin yields long–acting peptide antagonists, J. Med. Chem., 2012, vol. 55, no. 22, pp. 10187–10197.

    Article  PubMed  CAS  Google Scholar 

  37. Gregoriadis, G., Jain, S., Papaioannou, I., and Laing, P., Improving the therapeutic efficacy of peptides and proteins: A role for polysialic acids, Int. J. Pharm., 2005, vol. 300, nos. 1–2, pp. 125–130.

    Article  PubMed  CAS  Google Scholar 

  38. Zhang, R., Jain, S., Rowland, M., et al., Development and testing of solid dose formulations containing polysialic acid insulin conjugate: Next generation of longacting insulin, J. Diabetes Sci. Technol., 2010, vol. 4, no. 3, pp. 532–539.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Schellenberger, V., Wang, C.W., Geething, N.C., et al., A recombinant polypeptide extends the in vivo half–life of peptides and proteins in a tunable manner, Nat. Biotechnol., 2009, vol. 27, no. 12, pp. 1186–1190.

    Article  PubMed  CAS  Google Scholar 

  40. Koole, C., Reynolds, C.A., Mobarec, J.C., et al., Genetically encoded photocross–linkers determine the biological binding site of exendin–4 peptide in the N–terminal domain of the intact human glucagon–like peptide–1 receptor (GLP–1R), J. Biol. Chem., 2017, vol. 292, no. 17, pp. 7131–7144.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Schrempf, W. and Ziemssen, T., Glatiramer acetate: Mechanisms of action in multiple sclerosis, Autoimmun. Rev., 2007, vol. 6, no. 7, pp. 469–475.

    Article  PubMed  CAS  Google Scholar 

  42. Campos–Garcia, V.R., Herrera–Fernandez, D., Espinosa–de la Garza, C.E., et al., Process signatures in glatiramer acetate synthesis: Structural and functional relationships, Sci. Rep., 2017, vol. 7, no. 1, p. 12125.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Huang, F., Yang, Z., Yu, D., et al., Sepia ink oligopeptide induces apoptosis in prostate cancer cell lines via caspase–3 activation and elevation of Bax/Bcl–2 ratio, Mar. Drugs, 2012, vol. 10, no. 10, pp. 2153–2165.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Luna Vital, D.A., Gonzalez de Mejia, E., Dia, V.P., and Loarca–Pina, G., Peptides in common bean fractions inhibit human colorectal cancer cells, Food Chem., 2014, vol. 157, pp. 347–355.

    CAS  Google Scholar 

  45. Daliri, E.B., Oh, D.H., and Lee, B.H., Bioactive peptides, Foods, 2017, vol. 6, no. 5, p. 32.

    Article  PubMed Central  CAS  Google Scholar 

  46. Pane, K., Durante, L., Crescenzi, O., et al., Antimicrobial potency of cationic antimicrobial peptides can be predicted from their amino acid composition: Application to the detection of “cryptic” antimicrobial peptides, J. Theor. Biol., 2017, vol. 419, pp. 254–265.

    Article  PubMed  CAS  Google Scholar 

  47. Farkas, A., Maroti, G., Kereszt, A., and Kondorosi, E., Comparative analysis of the bacterial membrane disruption effect of two natural plant antimicrobial peptides, Front. Microbiol., 2017, vol. 8, p. 51.

    PubMed  PubMed Central  Google Scholar 

  48. Zhang, F., Cui, X., Fu, Y., et al., Antimicrobial activity and mechanism of the human milk–sourced peptide Casein201, Biochem. Biophys. Res. Commun., 2017, vol. 485, no. 3, pp. 698–704.

    Article  PubMed  CAS  Google Scholar 

  49. Mansour, S.C., Pena, O.M., and Hancock, R.E., Host defense peptides: Frontline immunomodulators, Trends Immunol., 2014, vol. 35, no. 9, pp. 443–450.

    Article  PubMed  CAS  Google Scholar 

  50. Zambrowicz, A., Pokora, M., Setner, B., et al., Multifunctional peptides derived from an egg yolk protein hydrolysate: Isolation and characterization, Amino Acids, 2015, vol. 47, no. 2, pp. 369–380.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Shadrina.

Additional information

Original Russian Text © P.A. Slominsky, M.I. Shadrina, 2018, published in Molekulyarnaya Genetika, Mikrobiologiya i Virusologiya, 2018, No. 1, pp. 8–14.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slominsky, P.A., Shadrina, M.I. Peptide Pharmaceuticals: Opportunities, Prospects, and Limitations. Mol. Genet. Microbiol. Virol. 33, 8–14 (2018). https://doi.org/10.3103/S0891416818010123

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0891416818010123

Keywords

Navigation