Skip to main content
Log in

The Role of Extracellular DNA in Salmonella Biofilms

  • Experimental Works
  • Published:
Molecular Genetics, Microbiology and Virology Aims and scope Submit manuscript

Abstract

In the present study, we focus on the effect of eDNA on the initial bacterial adhesion, biofilm formation, and the mature biofilms of 17 different Salmonella serovars. We evaluated the roles of eDNA on the initial microbial adhesion, and found that some of Salmonella serotypes formed significantly more biomass in the presence of DNase I, during the early stages of biofilm formation at 28°C for 24 hours, while same strains were not produce biofilm at 37°C. We suggested that the reason for divesity among biofilm production abilities of different serovars may be due to the variability of gene expression levels at different growth temperatures. It was observed that eDNA had a notable negative effect on the initial attachment of these serovars. 45.8% of all pre-established biofilm samples of serovars were eradicated at high concentrations of DNase I (50 μg/mL). Our study highlights the serotype based role of eDNA in Salmonella strains. This report is one of the few that represents the inhibitive effect of eDNA on biofilm formation of Salmonella strains. Also, this is the fisrt evidence that eDNA has either inhibitive or stimulative effects dependind on the serovars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Majowicz, S.E., Musto, J., Scallan, E., Angulo, F.J., Kirk, M., O’Brien, S.J., et al., The global burden of nontyphoidal Salmonella gastroenteritis, Clin. Infect. Dis., 2010, vol. 50, pp. 882–889.

    Article  PubMed  Google Scholar 

  2. Davies, D., Understanding biofilm resistance to antibacterial agents, Nat. Rev. Drug Discovery, 2003, vol. 2, pp. 114–122.

    Article  PubMed  CAS  Google Scholar 

  3. Hall–Stoodley, L., Costerton, J.W., and Stoodley, P., Bacterial biofilms: From the environment to infectious disease, Nat. Rev. Microbiol., 2004, vol. 2, pp. 95–108.

    Article  PubMed  CAS  Google Scholar 

  4. Steenackers, H., Hermans, K., Vanderleyden, J., and de Keersmaecker, S.C.J., Salmonella biofilms: An overview on occurrence, structure, regulation and eradication, Food Res. Int., 2012, vol. 45, pp. 502–531.

    Article  CAS  Google Scholar 

  5. Costerton, J.W., Stewart, P.S., and Greenberg, E.P., Bacterial biofilms: A common cause of persistent infections, Science, 1999, vol. 284, pp. 1318–1322.

    Article  PubMed  CAS  Google Scholar 

  6. Donlan, R.M. and Costerdon, J.W., Biofilms: Survival mechanisms of clinically relevant microorganisms, Clin. Microbiol. Rev., 2002, vol. 15, pp. 167–193.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Flemming, H.C. and Wingender, J., The biofilm matrix, Nat. Rev. Microbiol., 2010, vol. 8, pp. 623–633.

    Article  PubMed  CAS  Google Scholar 

  8. Finkel, S.E. and Kolter, R., DNA as a nutrient: Novel role for bacterial competence gene homologs, J. Bacteriol., 2001, vol. 183, pp. 6288–6293.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Spoering, A.L. and Gilmore, M.S., Quorum sensing and DNA release in bacterial biofilms, Curr. Opin. Microbiol., 2006, vol. 9, pp. 133–137.

    Article  PubMed  CAS  Google Scholar 

  10. Mulcahy, H., Charron–Mazenod, L., and Lewenza, S., Pseudomonas aeruginosa produces an extracellular deoxyribonuclease that is required for utilization of DNA as a nutrient source, Environ. Microbiol., 2010, vol. 12, pp. 1621–1629.

    PubMed  CAS  Google Scholar 

  11. Conover, M.S., Mishra, M., and Deora, R., Extracellular DNA is essential for maintaining Bordetella biofilm integrity on abiotic surfaces and in the upper respiratory tract of mice, PLoS One, 2011, vol. 6, p. e16861.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Whitchurch, C.B., Tolker–Nielsen, T., Ragas, P.C., and Mattick, J.S., Extracellular DNA required for bacterial biofilm formation, Science, 2002, vol. 295, p. 1487.

    Article  PubMed  CAS  Google Scholar 

  13. Tetz, G.V., Artemenko, N.K., and Tetz, V.V., Effect of DNase and antibiotics on biofilm characteristics, Antimicrob. Agents Chemother., 2009, vol. 53, pp. 1204–1209.

    Article  PubMed  CAS  Google Scholar 

  14. Manzenreiter, R., Kienberger, F., Marcos, V., Schilcher, K., Krautgartner, W.D., Obermayer, A., et al., Ultrastructural characterization of cystic fibrosis sputum using atomic force and scanning electron microscopy, J. Cystic Fibrosis, 2012, vol. 11, pp. 84–92.

    Article  CAS  Google Scholar 

  15. Das, T., Sharma, P.K., Busscher, H.J., van der Mei, H.C., and Krom, B.P., Role of extracellular DNA in initial bacterial adhesion and surface aggregation, Appl. Environ. Microbiol., 2010, vol. 76, pp. 3405–3408.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Berne, C., Kysela, D.T., and Brun, Y.V., A bacterial extracellular DNA inhibits settling of motile progeny cells within a biofilm, Mol. Microbiol., 2010, vol. 77, pp. 815–829.

    PubMed  PubMed Central  CAS  Google Scholar 

  17. Wang, H., Huang, Y., Wu, S., Li, Y., Ye, Y., Zheng, Y., et al., Extracellular DNA inhibits Salmonella enterica serovar Typhimurium and S. enterica serovar Typhi biofilm development on abiotic surfaces, Curr. Microbiol., 2014, vol. 68, pp. 262–268.

    Article  PubMed  CAS  Google Scholar 

  18. Tetz, V.V. and Tetz, G.V., Effect of extracellular DNA destruction by DNase I on characteristics of forming biofilms, DNA Cell Biol., 2010, vol. 29, pp. 399–405.

    Article  PubMed  CAS  Google Scholar 

  19. Johnson, L., Horsman, S.R., Charron–Mazenod, L., Turnbull, A.L., Mulcahy, H., Surette, M.G., et al., Extracellular DNA–induced antimicrobial peptide resistance in Salmonella enterica serovar Typhimurium, BMC Microbiol., 2013, vol. 13, p. 115.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Mulcahy, H., Charron–Mazenod, L., and Lewenza, S., Extracellular DNA chelates cations and induces antibiotic resistance in Pseudomonas aeruginosa biofilms, PLoS Pathog., 2008, vol. 4, no. 11, p. e1000213.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Römling, U., Sierralta, W.D., Eriksson, K., and Normark, S., Multicellular and aggregative behavior of Salmonella typhimurium strains is controlled by mutations in the agfD promoter, Mol. Microbiol., 1998, vol. 28, pp. 249–264.

    Article  PubMed  Google Scholar 

  22. Römling, U. and Rohde, M., Flagella modulate the multicellular behavior of Salmonella typhimurium on the community level, FEMS Microbiol. Lett., 1999, vol. 180, no. 1, pp. 91–102.

    Article  PubMed  Google Scholar 

  23. Römling, U., Rohde, M., Olsen, A., Normark, S., and Reinköster, J., AgfD, the checkpoint of multicellular and aggregative behavior in Salmonella typhimurium regulates at least two independent pathways, Mol. Microbiol., 2000, vol. 36, pp.10–23.

    Article  PubMed  Google Scholar 

  24. Stepanovic, S., Cirkovic, I., Ranin, L., and Svabic–Vlahovic, M., Biofilm formation by Salmonella spp. and Listeria monocytogenes on plastic surface, Lett. Appl. Microbiol., 2004, vol. 38, pp. 428–432.

    Article  PubMed  CAS  Google Scholar 

  25. Vestby, L.K., Møretrø, T., Langsrud, S., Heir, E., and Nesse, L.L., Biofilm forming abilities of Salmonella are correlated with persistence in fish meal and feed factories, BMC Vet. Res., 2009, vol. 5, p. 20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Wilson, K., Preparation of genomic DNA from bacteria, Curr. Protoc. Mol. Biol., 2001. doi 10.1002/0471142727.mb0204s56/abstract

    Google Scholar 

  27. Sambrook, J. and Russell, D.W., Standard ethanol precipitation of DNA in microcentrifuge tubes, Cold Spring Harbor Protoc., 2006. doi 10.1101/pdb.prot4456

    Google Scholar 

  28. Lin, A.W., Usera, M.A., Barrett, T.J., and Goldsby, R.A., Application of random amplified polymorphic DNA analysis to differentiate strains of Salmonella enteritidis. J. Clin. Microbiol., 1996, vol. 34, pp. 870–876.

    PubMed  PubMed Central  CAS  Google Scholar 

  29. Karatan, E. and Watnik, P., Signals, regulatory networks, and materials that build and break bacterial biofilms, Microbiol. Mol. Biol. Rev., 2009, vol. 73, pp. 310–347.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Lappann, M., Claus, H., van Alen, T., Harmsen, M., Elias, J., Molin, S., et al., A dual role of extracellular DNA during biofilm formation of Neisseria meningitidis, Mol. Microbiol., 2010, vol. 75, pp. 1355–1371.

    Article  PubMed  CAS  Google Scholar 

  31. Böckelmann, U., Janke, A., Kuhn, R., Neu, T.R., Wecke, J., Lawrence, J.R., et al., Bacterial extracellular DNA forming a defined network–like structure, FEMS Microbiol. Lett., 2006, vol. 262, pp. 31–38.

    Article  PubMed  CAS  Google Scholar 

  32. Shields, R.C., Mokhtar, N., Ford, M., Hall, M.J., Burgess, J.G., ElBadawey, M.R., et al., Efficacy of a marine bacterial nuclease against biofilm forming microorganisms isolated from chronic rhinosinusitis, PLoS One, 2013, vol. 8, p. e55339.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Hall–Stoodley, L. and Stoodley, P., Evolving concepts in biofilm infections, Cell. Microbiol., 2009, vol. 11, pp. 1034–1043.

    Article  PubMed  CAS  Google Scholar 

  34. Vilain, S., Pretorius, J.M., Theron, J., and Brozel, V.S., DNA as an adhesin: Bacillus cereus requires extracellular DNA to form biofilms, Appl. Environ. Microbiol., 2009, vol. 75, pp. 2861–2868.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Kaplan, J.B., Izano, E.A., Gopal, P., Karwacki, M.T., Kim, S., Bose, J.L., et al., Low levels of beta–lactam antibiotics induce extracellular DNA release and biofilm formation in Staphylococcus aureus, mBio, 2012, vol. 3, p. e00198–12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Frederiksen, B., Pressler, T., Hansen, A., Koch, C., and Høiby, N., Effect of aerosolized rhDNase (Pulmozyme ®) on pulmonary colonization in patients with cystic fibrosis, Acta Paediatr., 2006, vol. 95, pp. 1070–1074.

    Article  PubMed  Google Scholar 

  37. Tabak, M., Scher, K., Hartog, E., Romling, U., Matthews, K.R., Chikindas, M.L., et al., Effect of triclosan on Salmonella typhimurium at different growth stages and in biofilms, FEMS Microbiol. Lett., 2007, vol. 267, pp. 200–206.

    Article  PubMed  CAS  Google Scholar 

  38. Tabak, M., Scher, K., Chikindas, M.L., and Yaron, S., The synergistic activity of triclosan and ciprofloxacin on biofilms of Salmonella typhimurium, FEMS Microbiol, Lett., 2009, vol. 301, pp. 69–76.

    Article  CAS  Google Scholar 

  39. Vestby, L.K., Lönn–Stensrud, J., Møretrø, T., Langsrud, S., Aamdal–Scheie, A., Benneche, T., et al., A synthetic furanone potentiates the effect of disinfectants on Salmonella in biofilm, J. Appl. Microbiol., 2010, vol. 108, pp. 771–778.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. White, A.P., Gibson, D.L., Collinson, S.K., Banser, P.A., and Kay, W.W., Extracellular polysaccharides associated with thin aggregative fimbriae of Salmonella enterica serovar Enteritidis, J. Bacteriol., 2003, vol. 185, pp. 5398–5407.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Wu, J. and Xi, C., Evaluation of different methods for extracting extracellular DNA from the biofilm matrix, Appl. Environ. Microbiol., 2009, vol. 75, pp. 5390–5395.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Özdemir.

Additional information

The article is published in the original.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Özdemir, C., Akçelik, N. & Akçelik, M. The Role of Extracellular DNA in Salmonella Biofilms. Mol. Genet. Microbiol. Virol. 33, 60–71 (2018). https://doi.org/10.3103/S089141681801010X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S089141681801010X

Keywords

Navigation