Skip to main content
Log in

Biofilm Formation by Salmonella enterica Strains

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Biofilm formation by five different Salmonella enterica strains was assessed qualitatively and quantitatively under different incubation conditions. The strains exhibited different adherence abilities to test tubes. The isolates revealed Red Dry and Rough (RDAR) and Brown Dry and Rough (BDAR) morphotypes when cultured on Congo Red Agar (CRA). The pellicles formed by the tested strains ranged from strong to fragile when incubated in LB without NaCl at 27 °C. Smooth and White (SAW) morphotype on CRA and very weak pellicles were observed when the bacterial strains were incubated at 37 °C. The effect of temperature and media on biofilm formation by the tested strains was significant. Among the five Salmonella isolates, S. enteritidis TM 6 and S. enteritidis TM 68 formed strong biofilms when incubated in LB without NaCl at 27 °C for 24 h and consequently selected to be analysed under scanning electron microscope (SEM). Scanning electron micrographs revealed that S. enteritidis TM 6 formed more complex colonies when compared to those formed by S. enteritidis TM 68. As far as we know, this is the first study that provides quantitative and qualitative data for 5 Salmonella enterica isolates in different media mimicking four different nutritional conditions at two different temperatures after 24 and 48 h. The strains included two serovars S. bredeney and S. anatum, which are rarely accounted for. Additionally, the studies that described S. enteritidis biofilms under SEM are extremely limited, which makes it among the first comprehensive studies that screened for S. enteritidis biofilms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. El-moubasher F, Garcell HG, Ganesan N, Ahmed SNN, Al-hajri M, Al-thani MHJ, Al-marri SA, Ibrahim E, Al-rimaihi HE (2016) A retrospective epidemiological study on the incidence of salmonellosis in the State of Qatar during 2004–2012. Qatar Med J 2016:1–8

    Google Scholar 

  2. González GF, Alberts H, Lee J, Doolittle L, Gunn JS (2018) Biofilm formation protects Salmonella from antibiotic ciprofloxacin in vitro and in vivo in the mouse model of chronic carriage. Sci Rep. https://doi.org/10.1038/s41598-017-18516-2

    Article  PubMed  PubMed Central  Google Scholar 

  3. Iñiguez- Moreno M, Gutiérrez-Lomelí M, Guerro- Medina PJ, Avila- Novoa MG (2018) Biofilm formation by Staphylococcus aureus and Salmonella spp. under mono and dual- species conditions and their sensitivity to cetrimonium bromide, peracetic acid and sodium hypochlorite. Braz J Microbiol 49:310–319

    Article  PubMed  Google Scholar 

  4. Marin C, Hernandiz A, Lainez M (2009) Biofilm development capacity of Salmonella strains isolated in poultry risk factors and their resistance against disinfectants. Poult Sci 88:424–431

    Article  CAS  PubMed  Google Scholar 

  5. Gonzalez- Escobedo G (2011) Chronic and acute infection of the gall bladder by Salmonella typhi: Understanding the carrier state. Nat Rev Microbiol 9:9–14

    Article  CAS  PubMed  Google Scholar 

  6. Giaouris E, Chorianopoulos N, Skandamis P, Nychas GJ (2012) Attachment and biofilm formation by Salmonella in food processing environments, Salmonella—a dangerous foodborne pathogen. InTech open. https://doi.org/10.5772/28107

    Article  Google Scholar 

  7. Jia K, Wang G, Liang L, Wang M, Wang H, Xu X (2017) Preliminary transcriptomic analysis of mature biofilm and planktonic cells of Salmonellaenteritidis exposure to acid stress. Front Microbiol. https://doi.org/10.1038/s41598-017-18516-2

    Article  PubMed  PubMed Central  Google Scholar 

  8. Giaouris E, Heir E, Desvaux M, Hébraud M, Møretrø T, Langsrud S, Doulgeraki A, Nychas GJ, Kačániová M, Czaczyk K, Ölmez H, Simões M (2015) Intra- and inter- species interactions within biofilm of important foodborne bacterial pathogens. Front Microbiol 6:1–26. https://doi.org/10.3389/fmicb.2015.00841

    Article  Google Scholar 

  9. Čabarkapa I, Škrinjar M, Lević J, Kokić B, Blagojev N, Milanov D, Suvajdžić L (2015) Biofilm forming ability of Salmonella Enteritidis Invitro. Acta Vet Beograd 65:1–19

    Google Scholar 

  10. Jonas K, Tomenius H, Kader A, Normal S, Römling U, Belova LM, Melefors Ö (2007) Roles of curli, cellulose and BapA in Salmonella biofilm morphology studied by atomic force microscopy. BMC Microbiol. https://doi.org/10.1186/1471-2180-7-70

    Article  PubMed  PubMed Central  Google Scholar 

  11. Stepanović S, Vuković D, Dakić I, Savić B, Švabić- Vlahović M (2000) A modified microtiter plate test for quantification of staphylococcal biofilm formation. J Microbiol Methods 40:175–179

    Article  PubMed  Google Scholar 

  12. Jain S, Chen J (2006) Antibiotic Resistance Profiles and Cell Surface Components of Salmonella. J Food Prot 69:1017–1023

    Article  CAS  PubMed  Google Scholar 

  13. Cisar JO, Kolenbrander PE, Mcintire FC (1979) Specificity of Coaggregation reactions between human oral streptococci and strains of Actinomyces viscousus or Actinomyces naeslundii. Infect Immun 24:742–752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Vestby LK, Møretrø T, Balance S, Langsrud S, Nesse LL (2009) Survival potential of wild type cellulose deficient Salmonella from the feed industry. BMC Vet Res. https://doi.org/10.1186/1746-6148-5-43

    Article  PubMed  PubMed Central  Google Scholar 

  15. Uchida NS, Grespan R, Piovezan M, Ferreira EC, Machinski M, Nakamura Cuman RK, Mikcha JMG (2014) Effect of Carvacrol of Salmonella Saintpaul biofilms on stainless steel surface. Trop J Pharm Res 13:2021–2025

    Article  CAS  Google Scholar 

  16. Lu Y, Dong H, Chen S, Chen Y, Peng D, Liu X (2011) Characterization of biofilm formation by Salmonella enterica Serovar Pullorum strains. Afr J Microbiol Res 5:2428–2437

    CAS  Google Scholar 

  17. Raza A, Sarwar Y, Ali A, Jamil A, Hawue A, Haque A (2011) Effect of biofilm formation on the excretion of Salmonella enterica serovar typhi in feces. Int J Infect Dis 15:747–752

    Article  Google Scholar 

  18. Karaca B, Akcelik N, Akclelik M (2013) Biofilm-producing abilities of Salmonella strains isolated from Turkey. Biologia 68:1–10

    Article  CAS  Google Scholar 

  19. Paytubi S, Cansado C, Madrid C, Balsalobre C (2017) Nutrient composition promotes switching between pellicle and bottom biofilm in Salmonella. Front Microbiol 8:1–13. https://doi.org/10.3389/fmicb.2017.02160

    Article  Google Scholar 

  20. Solano C, Garcia B, Valle J, Berasain C, Ghigo JM, Gamazo C, Lasa I (2002) Genetic analysis of Salmonella Enteritidis biofilm formation: critical role of cellulose. Mol Microbiol 43:793–808

    Article  CAS  PubMed  Google Scholar 

  21. Gualdi L, Tagliabue L, Bertagnoli S, Ieranò T, De castro C, Landini P (2008) Cellulose modulates biofilm formation by counteracting curli-mediated colonization on solid surfaces in Eshcherichia coli. Microbiology 154:2017–2024

    Article  CAS  PubMed  Google Scholar 

  22. Prouty AM, Gunn JS (2003) Comparative analysis of Salmonella enterica serovar typhimurium biofilm formation on Gallstones and on Glass. Infect Immun 71:7154–7158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Römling U, Rohde M, Olsén A, Normark S, Reinköster J (2000) AgfD, the checkpoint of multicellular and aggregative behaviour in Salmonella typhimurium regulates at least two independent pathways. Mol Biol 36:10–23

    Google Scholar 

  24. Gerstel U, Römling U (2003) The csgD promoter, a control unit biofilm formation in Salmonella typhimurium. Res Microbiol 154:659–667

    Article  CAS  PubMed  Google Scholar 

  25. White AP, Gibson DL, Grassl GA, Kay WW, Finlay BB, Vallance BA, Surette MG (2008) Aggregation via the red, dry and rough morphotype is not a virulence adaptation in Salmonella enterica serovar typhimurium. Infect Immun 76:1048–1058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jain S, Chen J (2007) Attachment and biofilm formation by various serotypes of Salmonella as influenced by cellulose production and thin aggregative fimbriae biosynthesis. J Food Prot 70:2473–2479

    Article  PubMed  Google Scholar 

  27. Zogaj X, Bokranz W, Nimtz M, Römling U (2003) Production of cellulose and curli fimbriae by members of the family enterobacteriaceae isolated from the human gastrointestinal tract. Infect Immun 71:4151–4158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Malcova M, Hradecka H, Karpiskova R, Rychilik I (2008) Biofilm formation in field strains of Salmonella enterica serovar Typhimurium: Identification of a new colony morphology type and the role of SCI1 in biofilm formation. Vet Microbiol 129:360–366

    Article  CAS  PubMed  Google Scholar 

  29. Milanov DS, Prunić BZ, Velhner MJ, Pajić MLJ, Čabarkapa IS (2015) RDAR morphotype a resting stage of some enterobacteriaceae. Food Feed Res 42:43–50

    Article  CAS  Google Scholar 

  30. Stepanović S, Cirković I, Ranin L, Švabić-Vlahović M (2004) Biofilm formation by Salmonella spp. Listeria monocytogenes on plastic surface. Lett Appl Microbiol 38:428–432

    Article  PubMed  Google Scholar 

  31. Castelijn GAA, Dan der veen S, Zwietering MH, Moezelaar R, Abee T (2012) Diversity in biofilm formation and production of curli fimbriae and cellulose of Salmonella Typhimurium strains of different origin in high and low nutrient medium. Biofouling 27:51–63

    Article  Google Scholar 

  32. Oliveira K, Oliveira T, Teixiera P, Azeredo J, Henriques M, Oliviera R (2006) Comparison of the adhesion ability of different Salmonella enteritidis serotypes to materials used in kitchen. J Food Prot 69:2352–2356

    Article  PubMed  Google Scholar 

  33. Gerstel U, Römling U (2001) Oxygen tension and nutrient starvation are major signals that regulate agfD promoter activity and expression of the multicellular morphotype in Salmonella typhimurium. Environ Microbiol 3:638–648

    Article  CAS  PubMed  Google Scholar 

  34. Ngwai YB, Adachi Y, Ogawa Y, Hara H (2006) Characterization of Biofilm-forming abilities of antibiotic-resistant Salmonella typhimurium DT104 on hydrophobic abiotic surfaces. J Microbiol Immunol Infect 39:278–291

    CAS  PubMed  Google Scholar 

  35. Hood SK, Zottola EA (1997) Adherence to stainless steel by foodborne microorganisms during growth in model food systems. Int J Food Microbiol 37:145–153

    Article  CAS  PubMed  Google Scholar 

  36. Römling U, Sierralta WA, Eriksson K, Normal S (1998) Multicellular and aggregative behaviour of Salmonella typhimurium strains is controlled by mutations in the agfD promoter. Mol Biol 28:249–264

    Google Scholar 

  37. Schonewille E, Nesse LL, Hauch R, Windhorst D, Hagez HM, Vestby LK (2012) Biofilm building capacity of Salmonella enterica strains from the poultry farm environment. FEMS Immunol Med Mic 65:360–365

    Article  CAS  Google Scholar 

  38. Pande VV, Mcwhorter AR, Chousalkar KK (2016) Salmonella enterica isolates from layer farm environments are able to form biofilm on eggshell surfaces. Biofouling 32:699–710

    Article  CAS  PubMed  Google Scholar 

  39. Milanov D, Prunić B, Ljubojević D (2017) Biofilm forming ability of Salmonella enterica serovar Tennessee isolates originating from feed. Vet Arh 87:691–702

    Article  CAS  Google Scholar 

  40. Morimatsu K, Eguchi K, Hamanaka D, Tanaka F, Uchino T (2012) Effects of temperature and nutrient conditions on biofilm formation of Pseudomonas putida. Food Sci Technol Res 18:879–883

    Article  CAS  Google Scholar 

  41. Pawar DM, Rossoman ML, Chen J (2005) Role of curli fimbriae in mediating the cells of enterohaemorrahagic Escherichia coli to attach to abiotic surfaces. J Appl Microbiol 99:418–425

    Article  CAS  PubMed  Google Scholar 

  42. Tang PL, Pui CF, Wong WC, Noorlis A, Son R (2012) Biofilm forming ability and time course study of growth of Salmonella typhi on fresh produce surfaces. Int Food Res J 19:71–76

    Google Scholar 

  43. Agarwal RK, Singh S, Bhilegaonkar KN, Singh VP (2011) Optimization of microtiter plate assay for the testing of biofilm formation ability in different Salmonella serotypes. Int Food Res J 18:1493–1498

    Google Scholar 

  44. Chia TWR, Goulter RM, Mcmeekin T, Dykes GA, Fegan N (2009) Attachment of different Salmonella serovars to materials commonly used in a Poultry processing plant. Food Microbiol 26:853–859

    Article  CAS  PubMed  Google Scholar 

  45. Rodriguies D, Teixeira P, Oliviera R, Azeredo J (2011) Salmonella enterica Enteritidis biofilm formation and viability on regular and Triclosan- impregnated bench cover materials. J Food Prot 74:32–37

    Article  Google Scholar 

  46. Wang H, Ding S, Dong Y, Ye K, Xu X, Zhou G (2013) Biofilm formation of Salmonella serotypes in simulated meat processing environments and its relationship to cell characteristics. J Food Prot 76:1784–1789

    Article  PubMed  Google Scholar 

  47. Díez-garcía M, Capita R, Alonso- Calleja C (2012) Influence of serotype on the growth kinetics and the ability to form biofilms of Salmonella isolates from poultry. Food Microbiol 31:173–180

    Article  PubMed  Google Scholar 

  48. Asahi Y, Miura J, Tsuda T, Kuwabata S, Tsunashima K, Noiri Y, Sakata T, Ebisu S, Hayashi M (2015) Simple observation of Streptococcus mutans biofilm by scanning electron microscopy using ionic liquids. AMB Express 5:1–9. https://doi.org/10.1186/s13568-015-0097-4

    Article  CAS  Google Scholar 

  49. Donlan RM (2002) Biofilms: microbial life on surfaces. Emerg Infect Dis 8:881–890

    Article  PubMed  PubMed Central  Google Scholar 

  50. Ramesh N, Joseph SW, Carr LE, Douglass LW, Wheaton FW (2002) Evaluation of chemical disinfectants for the elimination of Salmonella biofilms from Poultry Transport containers. Poul Sci 81:904–910

    Article  CAS  Google Scholar 

Download references

Funding

Funding was provided by Scientific Research Unit of Ege University (Grant No. 2017-FEN-038).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fatima Shatila or Hüsniye Tansel Yalçın.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shatila, F., Yaşa, İ. & Yalçın, H.T. Biofilm Formation by Salmonella enterica Strains. Curr Microbiol 78, 1150–1158 (2021). https://doi.org/10.1007/s00284-021-02373-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-021-02373-4

Navigation