Skip to main content
Log in

Shaperone-Dependent Optimization of Expression in E. coli and Purification of Soluble Recombinant Lipid A Phosphatase LpxE from Francisella tularensis

  • Experimental Works
  • Published:
Molecular Genetics, Microbiology and Virology Aims and scope Submit manuscript

Abstract

Lipid-1a-phosphatase LpxE cleaves the phosphate group in the first position of lipid A of lipopolysaccharide in Gram-negative bacteria, which reduces toxicity and reactogenicity of bacterial endotoxin while maintaining its immunogenicity. Treatment with these enzymes in preparations of recombinant proteins obtained in bacterial producers, for example, in E. coli, may find application in the purification techniques of various pharmaceutical substances, primarily various protein components of vaccines. This work is devoted to the creation of an efficient method for obtaining an F. tularensis LpxE soluble protein in a heterologous expression system based on E. coli. Optimization of the bacterial production of LpxE enzyme is achieved by creating a SUMO-LpxE chimeric protein in which the SUMO polypeptide acts as a folding catalyst and an affinity target carrier for purifying the expression product. An additional increase in the level of synthesis of LpxE and reduction of its toxicity for a bacterial strain is achieved against the background of superproduction of bacterial periplasmic chaperones encoded by an auxiliary low copy plasmid. Subsequent chromatographic purification of the target recombinant protein involves the use of affinity metal chelate chromatography and a SUMO protease cleavage step of the SUMO peptide carrying the His6 N-terminal peptide with the reduction of natural primary structure of the enzyme. The developed method makes it possible to obtain a highly purified active enzyme LpxE F. tularensis with a yield of 0.26 g/L of bacterial culture without fermentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Williamson, E.D. and Oyston, P.C., Protecting against plague: Towards a next–generation vaccine, Clin. Exp. Immunol., 2013, vol. 172, no. 1, pp. 1–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Pichichero, M.E., Protein carriers of conjugate vaccines: Characteristics, development, and clinical trials, Hum. Vaccines Immunother., 2013, vol. 9, no. 12, pp. 2505–2523.

    Article  CAS  Google Scholar 

  3. Delany, I., Rappuoli, R., and Seib, K.L., Vaccines, reverse vaccinology, and bacterial pathogenesis, Cold Spring Harbor Perspect. Med., 2013, vol. 3, no. 5, p. a012476.

    Article  CAS  Google Scholar 

  4. Rosano, G.L. and Ceccarelli, E.A., Recombinant protein expression in Escherichia coli: Advances and challenges, Front. Microbiol., 2014, vol. 5, p. 172.

    PubMed  PubMed Central  Google Scholar 

  5. Structural Genomics Consortium; China Structural Genomics Consortium; Northeast Structural Genomics Consortium. Protein production and purification, Nat. Methods, 2008, vol. 5, no. 2, pp. 135–146.

    Google Scholar 

  6. Schwarz, H., Schmittner, M., Duschl, A., and Horejs–Hoeck, J., Residual endotoxin contaminations in recombinant proteins are sufficient to activate human CD1c+ dendritic cells, PLoS One, 2014, vol. 9, no. 12, p. e113840.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Baker, P.J., Hraba, T., Taylor, C.E., Myers, K.R., Takayama, K., Qureshi, N., et al., Structural features that influence the ability of lipid A and its analogs to abolish expression of suppressor T cell activity, Infect. Immun., 1992, vol. 60, no. 7, pp. 2694–2701.

    PubMed  PubMed Central  CAS  Google Scholar 

  8. Lu, Y.C., Yeh, W.C., and Ohashi, P.S., LPS/TLR4 signal transduction pathway, Cytokine, 2008, vol. 42, no. 2, pp. 145–151.

    Article  PubMed  CAS  Google Scholar 

  9. Moingeon, P., Haensler, J., and Lindberg, A., Towards the rational design of Th1 adjuvants, Vaccine, 2001, vol. 19, no. 31, pp. 4363–4372.

    Article  PubMed  CAS  Google Scholar 

  10. Wilson, M.J., Haggart, C.L., Gallagher, S.P., and Walsh, D., Removal of tightly bound endotoxin from biological products, J. Biotechnol., 2001, vol. 88, no. 1, pp. 67–75.

    Article  PubMed  CAS  Google Scholar 

  11. Dudley, A., McKinstry, W., Thomas, D., Best, J., and Jenkins, A., Removal of endotoxin by reverse phase HPLC abolishes anti–endothelial cell activity of bacterially expressed plasminogen kringle 5, Biotechniques, 2003, vol. 35, no. 4, pp. 724–726.

    Article  PubMed  CAS  Google Scholar 

  12. Habich, C., Kempe, K., van der Zee, R., Rümenapf, R., Akiyama, H., Kolb, H., and Burkart, V., Heat shock protein 60: Specific binding of lipopolysaccharide, J. Immunol., 2005, vol. 174, no. 3, pp. 1298–1305.

    CAS  Google Scholar 

  13. Magalhães, P.O., Lopes, A.M., Mazzola, P.G., Rangel–Yagui, C., Penna, T.C., and Pessoa, A., Jr., Methods of endotoxin removal from biological preparations: A review, J. Pharm. Pharm. Sci., 2007, vol. 10, no. 3, pp. 388–404.

    Google Scholar 

  14. Wakelin, S.J., Sabroe, I., Gregory, C.D., Poxton, I.R., Forsythe, J.L., Garden, O.J., and Howie, S.E., “Dirty little secrets”–endotoxin contamination of recombinant proteins, Immunol. Lett., 2006, vol. 106, no. 1, pp. 1–7.

    Article  PubMed  CAS  Google Scholar 

  15. Karbarz, M.J., Kalb, S.R., Cotter, R.J., and Raetz, C.R., Expression cloning and biochemical characterization of a Rhizobium leguminosarum lipid A 1–phosphatase, J. Biol. Chem., 2003, vol. 278, no. 41, pp. 39269–39279.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Wang, X., Karbarz, M.J., McGrath, S.C., Cotter, R.J., and Raetz, C.R., MsbA transporter–dependent lipid A 1 dephosphorylation on the periplasmic surface of the inner membrane: Topography of Francisella novicida LpxE expressed in Escherichia coli, J. Biol. Chem., 2004, vol. 279, no. 47, pp. 49470–49478.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Tran, A.X., Karbarz, M.J., Wang, X., Raetz, C.R.H., McGrath, S.C., Cotter, R.J., et al., Periplasmic cleavage and modification of the 1–phosphate group of Helicobacter pylori lipid A, J. Biol. Chem., 2004, vol. 279, no. 53, pp. 55780–55791.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Park, B.S., Song, D.H., Kim, H.M., Choi, B.S., Lee, H., and Lee, J.O., The structural basis of lipopolysaccharide recognition by the TLR4–MD–2 complex, Nature, 2009, vol. 458, no. 7242, pp. 1191–1195.

    Article  PubMed  CAS  Google Scholar 

  19. Gaekwad, J., Zhang, Y., Zhang, W., Reeves, J., Wolfert, M.A., and Boons, G.J., Differential induction of innate immune responses by synthetic lipid a derivatives, J. Biol. Chem., 2010, vol. 285, no. 38, pp. 29375–29386.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Mata–Haro, V., Cekic, C., Martin, M., Chilton, P.M., Casella, C.R., and Mitchell, T.C., The vaccine adjuvant monophosphoryl lipid A as a TRIF–biased agonist of TLR4, Science, 2007, vol. 316, no. 5831, pp. 1628–1632.

    Article  PubMed  CAS  Google Scholar 

  21. Qureshi, N., Takayama, K., and Ribi, E., Purification and structural determination of nontoxic lipid A obtained from the lipopolysaccharide of Salmonella typhimurium, J. Biol. Chem., 1982, vol. 257, no. 19, pp. 11808–11815.

    PubMed  CAS  Google Scholar 

  22. Ulrich, J.T. and Myers, K.R., Monophosphoryl lipid A as an adjuvant. Past experiences and new directions, Pharm. Biotechnol., 1995, vol. 6, pp. 495–524.

    Article  PubMed  CAS  Google Scholar 

  23. Persing, D.H., Coler, R.N., Lacy, M.J., Johnson, D.A., Baldridge, J.R., Hershberg, R.M., and Reed, S.G., Taking toll: Lipid A mimetics as adjuvants and immunomodulators, Trends Microbiol., 2002, vol. 10, no. 10, Suppl., pp. S32–S37.

    Article  PubMed  CAS  Google Scholar 

  24. Kundi, M., New hepatitis B vaccine formulated with an improved adjuvant system, Expert Rev. Vaccines, 2007, vol. 6, no. 2, pp. 133–140.

    Article  PubMed  CAS  Google Scholar 

  25. Schlapschy, M., Grimm, S., and Skerra, A., A system for concomitant overexpression of four periplasmic folding catalysts to improve secretory protein production in Escherichia coli, Protein Eng., Des. Sel., 2006, vol. 19, no. 8, pp. 385–390.

    Article  CAS  Google Scholar 

  26. Studier, F.W. and Moffatt, B.A., Use of bacteriophage T7 RNA polymerase to direct selective high–level expression of cloned genes, J. Mol. Biol., 1986, vol. 189, no. 1, pp. 113–130.

    Article  PubMed  CAS  Google Scholar 

  27. Satakarni, M. and Curtis, R., Production of recombinant peptides as fusions with SUMO, Protein Expression Purif., 2011, vol. 78, no. 2, pp. 113–119.

    Article  CAS  Google Scholar 

  28. Huang, X.C., Quesada, M.A., and Mathies, R.A., DNA sequencing using capillary array electrophoresis, Anal. Chem., 1992, vol. 64, no. 18, pp. 2149–2154.

    Article  PubMed  CAS  Google Scholar 

  29. Lamberg, A., Nieminen, S., Qiao, M., and Savilahti, H., Efficient insertion mutagenesis strategy for bacterial genomes involving electroporation of in vitro–assembled DNA transposition complexes of bacteriophage mu, Appl. Environ. Microbiol., 2002, vol. 68, no. 2, pp. 705–712.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Yuannan Xia and Peng Luan, Int. Patent WO2003100022, 2003.

    Google Scholar 

  31. Karbarz, M.J., Six, D.A., and Raetz, C.R., Purification and characterization of the lipid A 1–phosphatase LpxE of Rhizobium leguminosarum, J. Biol. Chem., 2009, vol. 284, no. 1, pp. 414–425.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Sørensen, H.P. and Mortensen, K.K., Soluble expression of recombinant proteins in the cytoplasm of Escherichia coli, Microb. Cell Fact., 2005, vol. 4, no. 1, p. 1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Dwyer, R.S., Malinverni, J.C., Boyd, D., Beckwith, J., and Silhavy, T.J., Folding lacZ in the periplasm of Escherichia coli, J. Bacteriol., 2014, vol. 196, no. 18, pp. 3343–3350.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Pan, K.–L., Hsiao, H.–C., Weng, C.–L., Wu, M.–S., and Chou, C.P., Roles of DegP in prevention of protein misfolding in the periplasm upon overexpression of penicillin acylase in Escherichia coli, J. Bacteriol., 2003, vol. 185, no. 10, pp. 3020–3030.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Selzer, G., Som, T., Itoh, T., and Tomizawa, J.–I., The origin of replication of plasmid p15A and comparative studies on the nucleotide sequences around the origin of related plasmids, Cell, 1983, vol. 32, no. 1, pp. 119–129.

    Article  PubMed  CAS  Google Scholar 

  36. Ma, B., Reynolds, C.M., and Raetz, C.R., Periplasmic orientation of nascent lipid A in the inner membrane of an Escherichia coli LptA mutant, Proc. Natl. Acad. Sci. U. S. A., 2008, vol. 105, no. 37, pp. 13823–13828.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kozyr.

Additional information

Original Russian Text © A.V. Kozyr, L.A. Lisitskaya, A.K. Ryabko, N.A. Zeninskaya, M.A. Marin, O.N. Krasavtseva, I.G. Shemyakin, A.V. Kolesnikov, 2018, published in Molekulyarnaya Genetika, Mikrobiologiya i Virusologiya, 2018, No. 1, pp. 29–36.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozyr, A.V., Lisitskaya, L.A., Ryabko, A.K. et al. Shaperone-Dependent Optimization of Expression in E. coli and Purification of Soluble Recombinant Lipid A Phosphatase LpxE from Francisella tularensis. Mol. Genet. Microbiol. Virol. 33, 34–43 (2018). https://doi.org/10.3103/S089141681801007X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S089141681801007X

Keywords

Navigation