Skip to main content
Log in

Regulation of Yersinia pseudotuberculosis major porin expression in response to antibiotic stress

  • Experimental Works
  • Published:
Molecular Genetics, Microbiology and Virology Aims and scope Submit manuscript

Abstract

The expression of the OmpF porin gene in Yersinia pseudotuberculosis in response to antibiotics of two different classes (kanamycin and nalidixic acid) was analyzed using a quantitative PCR and a fluorescence reporter system. Both antibiotics downregulated the expression of the ompF gene. The nalidixic acid significantly reduced the ompF expression, while kanamycin, for which porins are considered to be an alternative transport route, only slightly reduced the ompF level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alphen, W.V., Boxtel, R.V., Selm, N.V., and Lugtenberg, B., Pores in the outer membrane of Escherichia coli K12. Involvement of proteins b and c in the permeation of cephaloridine and ampicillin, Microbiol. Lett., 1978, vol. 3, pp. 103–106.

    Article  Google Scholar 

  2. Nikaido, H., Porins and specific channels of bacterial outer membranes, Mol. Microbiol., 1992, vol. 6, no. 4, pp. 435–442.

    Article  CAS  PubMed  Google Scholar 

  3. Nikaido, H., Porins and specific diffusion channels in bacterial outer membranes, J. Biol. Chem., 1994, vol. 269, pp. 3905–3908.

    CAS  PubMed  Google Scholar 

  4. Nikaido, H., Molecular basis of bacterial outer membrane permeability revisites, Microbiol. Mol. Biol. Rev., 2003, vol. 67, pp. 593–656.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Davin-Regli, A., Bolla, J.M., James, C.E., Lavigne, J.P., Chevalier, J., Garnotel, E., et al., Membrane permeability and regulation of drug influx and efflux in enterobacterial pathogens, Curr. Drug Targets, 2008, vol. 9, pp. 750–759.

    Article  CAS  PubMed  Google Scholar 

  6. Pages, J.M., James, C.E., and Winterhalter, M., The porin and the permeating antibiotic: a selective diffusion barrier in Gram-negative bacteria, Nat. Rev. Microbiol., 2008, vol. 6, pp. 893–903.

    Article  CAS  PubMed  Google Scholar 

  7. Quinn, J.P., Dubek, E.S., Divinceuzo, C.A., Lucks, D.A., and Lerner, S.A., Emergence of resistance to imipenem during therapy for Pseudomonas aeruginosa infections, J. Infect. Dis., 1986, vol. 154, pp. 298–294.

    Google Scholar 

  8. Tzouvelekis, L.S., Tzelepi, E., Kaufmann, H.E., and Mentis, A.F., Nucleotide sequence of a plasmid-mediated cephalosporinase gene (blaLAT-1) found in Klebsiella pneumonia, J. Med. Microbiol., 1994, vol. 40, pp. 403–407.

    Article  CAS  PubMed  Google Scholar 

  9. Fukushima, H., Matsuda, Y., Seki, R., Tsubokura, M., Takeda, N., Shubin, F.N., et al., Geographical heterogeneity between Far Eastern and Western countries in prevalence of the virulence plasmid, the superantigen Yersinia pseudotuberculosis-derived mitogen, and the high-pathogenicity island among Yersinia pseudotuberculosis strains, J. Clin. Microbiol., 2001, vol. 39, no. 10, pp. 3541–3547.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Biran, I., Rissin, D., Ron, E., and Walt, D., Optical imaging fiber-based live bacterial cell array biosensor, Anal. Biochem., 2003, vol. 315, no. 1, pp. 106–113.

    Article  CAS  PubMed  Google Scholar 

  11. Roberto, F., Barnes, J., and Bruhn, D., Evaluation of a GFP reporter gene construct for environmental arsenic detection, Talanta, 2002, vol. 58, no. 1, pp. 181–188.

    Article  CAS  PubMed  Google Scholar 

  12. Sagi, E., Hever, N., Rosen, R., Bartolome, A., Premkumar, J., Ulber, R., et al., Fluorescence and bioluminescence reporter function in genetically modified bacterial sensor strains, Sens Actuators, 2003, vol. 90, pp. 2–8.

    Article  CAS  Google Scholar 

  13. Soriano, F. and Vega, J., The susceptibility of Yersinia to eleven antimicrobials, J. Antimicrob. Chemother., 1982, vol. 10, pp. 543–547.

    Article  CAS  PubMed  Google Scholar 

  14. Martins, C.H., Bauab, T.M., and Falcao, D.P., Characteristics of Yersinia pseudotuberculosis isolated from animals in Brazil, J. Appl. Microbiol., 1998, vol. 85, pp. 703–707.

    Article  CAS  PubMed  Google Scholar 

  15. Achtman, M., Zurth, K., Morelli, G., Torrea, G., Guiyoule, A., and Carniel, E., Yersinia pestis, the cause of plague, is a recently emerged clone of Yersinia pseudotuberculosis, Proc. Natl. Acad. Sci. USA, 1999, vol. 96, pp. 14043–14048.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Chain, P.S.G., Carniel, E., Larimer, F.W., Lamerdin, J., Stoutland, P.O., Regala, W.M., et al., Insights into the evolution of Yersinia pestis through whole-genome comparison with Yersinia pseudotuberculosis, Proc. Natl. Acad. Sci. USA, 2004, vol. 101, no. 38, pp. 13826–13831.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Eppinger, M., Rosovitz, M.J., Fricke, W.F., Rasko, D.A., Kokorina, G., Fayolle, C., et al., The complete genome sequence of Yersinia pseudotuberculosis IP31758, the causative agent of Far East scarlet-like fever, PLoS Genetics, 2007, vol. 3, no. 8, pp. 1508–1523.

    CAS  Google Scholar 

  18. Hancock, R.E.W., Raffle, V.J., and Nicas, T.I., Involvement of the outer membrane in gentamicin and streptomycin uptake and killing in Pseudomonas aeruginosa, Antimicrob. Agents Chemother., 1981, vol. 19, pp. 777–785.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Nicas, T.I. and Hancock, R.E.W., Outer membrane protein H1 of Pseudomonas aeruginosa: Involvement in adaptive and mutational resistance to ethylenediamine-tetraacetate, polymyxin B, and gentamicin, J. Bacteriol., 1980, vol. 143, pp. 872–878.

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Hancock, R.E.W., Farmer, S.W., Li, Z., and Poole, K., Interaction of aminoglycosides with the outer membranes and purified lipopolysaccharide and OmpF porin of Escherichia coli, Antimicrob. Agents. Chemother., 1991, vol. 35, no. 7, pp. 1309–1314.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Nakae, R. and Nakae, T., Diffusion of aminoglycoside antibiotics across the outer membrane of Escherichia coli, Antimicrob. Agents. Chemother., 1982, vol. 22, pp. 554–559.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Agafitei, O., Kim, E.J., Maguire, T., and Sheridan, J., The role of Escherichia coli porins OmpC and OmpF in antibiotic cross resistance induced by subinhibitory concentrations of kanamycin, J. Exp. Microbiol. Immunol., 2010, vol. 14, pp. 34–39.

    Google Scholar 

  23. Kobayashi, Y. and Nakae, T., The mechanism of ion selectivity of OmpF-porin pores of Escherichia coli, Eur. J. Biochem., 1985, vol. 151, pp. 231–236.

    Article  CAS  PubMed  Google Scholar 

  24. Sanders, C.C., Sanders, W.E., Richard, Jr., Goering, V., and Werner, V., Selection of multiple antibiotic resistance by quinolones, betalactams, and aminoglycosides with special reference to cross-resistance between unrelated drug classes, Antimicrob. Agents Chemother., 1984, vol. 26, no. 6, pp. 797–801.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Mortimer, P.G.S. and Piddock, L.J.V., The accumulation of five antibacterial agents in porin-deficient mutants of Escherichia coli, J. Antimicrob. Chemother., 1993, vol. 32, pp. 195–213.

    Article  CAS  PubMed  Google Scholar 

  26. Esfahani, A.G., Keogh, J., Mosley, T., and Shahablou, S., Role of OmpF and OmpC in kanamycin-induced resistance to kanamycin and transient cross-resistance to empicillin in Escherichia coli K12, J. Exp. Microbiol. Immunol., 2010, vol. 14, pp. 28–33.

    Google Scholar 

  27. Navia, M.M., Ruiz, J., Ribera, A., de Anta, M.T.J., and Vila, J., Analysis of the mechanisms of quinolone resistance in clinical isolates of Citrobacter freundii, J. Antimicrob. Chemother., 1999, vol. 44, no. 6, pp. 743–748.

    Article  CAS  PubMed  Google Scholar 

  28. Sanchez-Cespedes, J., Navia, M.M., Matinez, R., Orden, B., Millan, R., Ruiz, J., and Vila, J., Clonal dissemination of Yersinia enterocolitica strains with various susceptibilities to nalidixic acid, J. Clin. Microbiol., 2003, vol. 41, no. 4, pp. 1769–1771.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Friedman, S.M., Hossain, M., Hasson, T.H., and Kawamura, A., Gene expression profiling of intrinsic thermotolerance in Escherichia coli, Curr. Microbiol., 2006, vol. 52, no. 1, pp. 50–54.

    Article  CAS  PubMed  Google Scholar 

  30. Lin, X., Li, H., Wang, C., and Peng, X., Proteomic analysis of nalidixic acid resistance in Escherichia coli: identification and functional characterization of OM proteins, J. Proteome Res., 2008, vol. 7, pp. 2399–2405.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Stenkova.

Additional information

Original Russian Text © E.P. Bystritskaya, A.M. Stenkova, O.Yu. Portnyagina, A.V. Rakin, V.A. Rasskazov, M.P. Isaeva, 2014, published in Molekulyarnaya Genetika, Mikrobiologiya i Virusologiya, 2014, No. 2, pp. 17–21.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bystritskaya, E.P., Stenkova, A.M., Portnyagina, O.Y. et al. Regulation of Yersinia pseudotuberculosis major porin expression in response to antibiotic stress. Mol. Genet. Microbiol. Virol. 29, 63–68 (2014). https://doi.org/10.3103/S0891416814020037

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0891416814020037

Keywords

Navigation