Skip to main content
Log in

Electron Density Reduction Caused by the Tonga Volcano Eruption on January 15, 2022

  • SPACE PHYSICS
  • Published:
Kinematics and Physics of Celestial Bodies Aims and scope Submit manuscript

Abstract

The explosive Tonga volcano is among the unique ones. Its order of magnitude is the same as Krakatoa (1883), St. Helens (1980), El Chichón (1982), and Pinatubo (1991) volcanoes. The uniqueness of the Tonga volcano lies in the fact that the products of eruption of the Tonga volcano rose to a record height of 50–58 km, whereas the height of eruption of the most powerful Krakatoa volcano reached only 40–55 km. The Tonga volcano has estimates of 3.9 × 1018 J for thermal energy, approximately 5.8 for volcanic explosive index VEI, approximately 5.5 for volcano magnitude M, and approximately 10.8 for eruption intensity I. We have estimated the explosion energy to be 16–18 Mt TNT. The problems of proving that a decrease in the total electron content (TEC), which was observed on January 15, 2022, in the ionosphere, was caused by the Tonga volcano explosion, and determining the principal parameters of the ionospheric hole are very urgent problems. This study is aimed at analyzing the parameters of the ionospheric hole created by the Tonga volcano explosion on January 15, 2022. Well-known GPS technologies are used to obtain data on time variations of the ionospheric TEC in the vertical column by measuring the pseudo-range and the integrated phase data at two frequencies along the path to each GPS satellite. The space weather conditions were favorable for observing the ionospheric effects caused by the explosion of the Tonga volcano. The calendar dates of January 13 and 17, which are used as reference days, were the least disturbed ones. The main results are as follows. It was found that the TEC on the reference days varied almost monotonically. Aperiodic and quasi-periodic variations of TEC were observed on the day of volcano eruption. Aperiodic variations are associated with a decrease in the TEC. This effect is called the ionospheric hole. It has been proven that the ionospheric hole is caused by a volcanic explosion. The delay time of the hole increases with an increase in the distance between the volcano and the observation site, while both the absolute value of the TEC and the relative value of its decrease are reduced. According to estimates, the horizontal size of the ionospheric hole did not exceed 10 Mm, and the time delay of its appearance did not exceed 122 min. The vertical speed of disturbance propagation was 36–72 m/s, and the horizontal speed was 2.2 km/s. The lifetime of the ionospheric hole was 120–200 min. The TEC in the ionospheric hole was reduced by approximately 2.5–10 TECU, which is a function of the distance from the volcano to the observation site, and the relative decrease ranged from –17 to –34%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. L. F. Chernogor, Physics and Ecology of Disasters: Monograph (Khark. Nats. Univ. im. V. N. Karazina, Kharkiv, 2012) [in Russian].

  2. L. F. Chernogor, “Physical effects of the January 15, 2022, powerful Tonga volcano explosion in the Earth–atmosphere–ionosphere–magnetosphere system,” Kosm. Nauka Tekhnol. 29 (2), 54–77 (2023).

    Article  Google Scholar 

  3. L. F. Chernogor and M. B. Shevelev, “A statistical study of the explosive waves launched by the Tonga super-volcano on January 15, 2022,” Kosm. Nauka Tekhnol. 29 (5) (2023) (in press).

  4. E. Aa, S.-R. Zhang, P. J. Erickson, J. Vierinen, A. J. Coster, L. P. Goncharenko, A. Spicher, and W. Rideout, “Significant ionospheric hole and equatorial plasma bubbles after the 2022 Tonga volcano eruption,” Geophys. Res. Lett. 20, e2022SW003101 (2022). https://doi.org/10.1029/2022SW003101

  5. E. Aa, S.-R. Zhang, W. Wang, P. J. Erickson, L. Qian, R. Eastes, B. J. Harding, T. J. Immel, D. K. Karan, R. E. Daniell, A. J. Coster, L. P. Goncharenko, J. Vierinen, X. Cai, and A. Spicher, “Pronounced suppression and X-pattern merging of equatorial ionization anomalies after the 2022 Tonga volcano eruption,” J. Geophys. Res.: Space Phys. 127, e2022JA030527 (2022). https://doi.org/10.1029/2022JA030527

  6. A. Amores, S. Monserrat, M. Marcos, D. Argüeso, J. Villalonga, G. Jordà, and D. Gomis, “Numerical simulation of atmospheric Lamb waves generated by the 2022 Hunga-Tonga volcanic eruption,” Geophys. Res. Lett. 49, e2022GL098240 (2022). https://doi.org/10.1029/2022GL098240

  7. E. Astafyeva, B. Maletckii, T. D. Mikesell, E. Munaibari, M. Ravanelli, P. Coisson, F. Manta, and L. Rolland, “The 15 January 2022 Hunga Tonga eruption history as inferred from ionospheric observations,” Geophys. Res. Lett. 49, e2022GL098827 (2022). https://doi.org/10.1029/2022GL098827

  8. S. Burt, “Multiple airwaves crossing Britain and Ireland following the eruption of Hunga Tonga–Hunga Ha’apai on 15 January 2022,” Weather 77, 76–81 (2022). https://doi.org/10.1002/wea.4182

    Article  ADS  Google Scholar 

  9. J. L. Carr, Á. Horváth, D. L. Wu, and M. D. Friberg, “Stereo plume height and motion retrievals for the record-setting Hunga Tonga–Hunga Ha’apai eruption of 15 January 2022,” Geophys. Res. Lett. 49, e2022GL098131 (2022). https://doi.org/10.1029/2022GL098131

  10. M. Carvajal, I. Sepúlveda, A. Gubler, and R. Garreaud, “Worldwide signature of the 2022 Tonga volcanic tsunami,” Geophys. Res. Lett. 49, e2022GL098153 (2022). https://doi.org/10.1029/2022GL098153

  11. C.-H. Chen, X. Zhang, Y.-Y. Sun, F. Wang, T.-C. Liu, C.-Y. Lin, Y. Gao, J. Lyu, X. Jin, X. Zhao, X. Cheng, P. Zhang, Q. Chen, D. Zhang, Z. Mao, and J.-Y. Liu, “Individual wave propagations in ionosphere and troposphere triggered by the Hunga Tonga–Hunga Ha’apai underwater volcano eruption on 15 January 2022,” Remote Sens. 14, 2179 (2022). https://doi.org/10.3390/rs14092179

    Article  ADS  Google Scholar 

  12. K. Cheng and Y.-N. Huang, “Ionospheric disturbances observed during the period of Mount Pinatubo eruptions in June 1991,” J. Geophys. Res.: Space Phys. 97, 16 995–17 004 (1992). https://doi.org/10.1029/92JA01462

    Article  ADS  Google Scholar 

  13. L. F. Chernogor, “Effects of the Tonga volcano explosion on January 15, 2022,” in Astronomy and Space Physics in the Kyiv University: Proc. Int. Conf. in Part of the World Science Day for Peace and Development, Kyiv, Ukraine, Oct. 18–21, 2022, pp. 12–13.

  14. L. F. Chernogor, “Electrical effects of the Tonga volcano unique explosion on January 15, 2022,” in Astronomy and Space Physics in the Kyiv University: Proc. Int. Conf. in Part of the World Science Day for Peace and Development, Kyiv, Ukraine, Oct. 18–21, 2022, pp. 79–80.

  15. L. F. Chernogor, “Magnetospheric effects that accompanied the explosion of the Tonga volcano on January 15, 2022,” in Astronomy and Space Physics in the Kyiv University: Proc. Int. Conf. in Part of the World Science Day for Peace and Development, Kyiv, Ukraine, Oct. 18–21, 2022, pp. 81–82.

  16. L. F. Chernogor, “Magnetic effects of the unique explosion of the Tonga volcano,” in Astronomy and Space Physics in the Kyiv University: Proc. Int. Conf. in Part of the World Science Day for Peace and Development, Kyiv, Ukraine, Oct. 18–21, 2022, pp. 89–90.

  17. L. F. Chernogor, “Tonga super-volcano explosion as a subject of applied physics,” in Electronics and Applied Physics: Proc. Int. Sci. Conf. (APHYS 2022), Kyiv, Ukraine, Oct. 18–22, 2022, pp. 130–131.

  18. L. F. Chernogor, Y. B. Mylovanov, and V. L. Dorohov, “Ionospheric effects accompanying the January 15, 2022 Tonga volcano explosion,” in Astronomy and Space Physics in the Kyiv University: Proc. Int. Conf. in Part of the World Science Day for Peace and Development, Kyiv, Ukraine, Oct. 18–21, 2022, pp. 83–84.

  19. L. F. Chernogor and M. B. Shevelev, “Statistical characteristics of atmospheric waves, generated by the explosion of the Tonga volcano on January 15, 2022,” in Astronomy and Space Physics in the Kyiv University: Proc. Int. Conf. in Part of the World Science Day for Peace and Development, Kyiv, Ukraine, Oct. 18–21, 2022, pp. 85–86.

  20. T. Dautermann, E. Calais, and G. S. Mattioli, “Global Positioning System detection and energy estimation of the ionospheric wave caused by the 13 July 2003 explosion of the Soufrière Hills volcano, Montserrat,” J. Geophys. Res.: Solid Earth 114, B02202 (2009). https://doi.org/10.1029/2008JB005722

    Article  ADS  Google Scholar 

  21. T. Dautermann, E. Calais, P. Lognonné, and G. Mattioli, “Lithosphere-atmosphere-ionosphere coupling after the 2003 explosive eruption of the Soufrière Hills volcano, Montserrat,” Geophys. J. Int. 179, 1537–1546 (2009). https://doi.org/10.1111/j.1365-246X.2009.04390.x

    Article  ADS  Google Scholar 

  22. M. Ern, L. Hoffmann, S. Rhode, and P. Preusse, “The mesoscale gravity wave response to the 2022 Tonga volcanic eruption: AIRS and MLS satellite observations and source backtracing,” Geophys. Res. Lett. 49, e2022GL098626 (2022). https://doi.org/10.1029/2022GL098626

  23. B. J. Harding, Y.-J. J. Wu, P. Alken, Y. Yamazaki, C. C. Triplett, T. J. Immel, L. C. Gasque, S. B. Mende, and C. Xiong, “Impacts of the January 2022 Tonga volcanic eruption on the ionospheric dynamo: ICON-MIGHTI and swarm observations of extreme neutral winds and currents,” Geophys. Res. Lett. 49, e2022GL098577 (2022). https://doi.org/10.1029/2022GL098577

  24. M. Heidarzadeh, A. R. Gusman, T. Ishibe, R. Sabeti, and J. Šepić, “Estimating the eruption-induced water displacement source of the 15 January 2022 Tonga volcanic tsunami from tsunami spectra and numerical modelling,” Ocean Eng. 261, 112165 (2022). https://doi.org/10.1016/j.oceaneng.2022.112165

    Article  Google Scholar 

  25. K. Heki, “Explosion energy of the 2004 eruption of the Asama volcano, central Japan, inferred from ionospheric disturbances,” Geophys. Res. Lett. 33, L14303 (2006). https://doi.org/10.1029/2006GL026249

    Article  ADS  Google Scholar 

  26. K. Igarashi, S. Kainuma, I. Nishimuta, S. Okamoto, H. Kuroiwa, T. Tanaka, and T. Ogawa, “Ionospheric and atmospheric disturbances around Japan caused by the eruption of Mount Pinatubo on 15 June 1991,” J. Atmos. Terr. Phys. 56, 1227–1234 (1994).

    Article  ADS  Google Scholar 

  27. F. Imamura, A. Suppasri, T. Arikawa, S. Koshimura, K. Satake, and Y. Tanioka, “Preliminary observations and impact in Japan of the tsunami caused by the Tonga volcanic eruption on January 15, 2022,” Pure Appl. Geophys. 179, 1549–1560 (2022). https://doi.org/10.1007/s00024-022-03058-0

    Article  ADS  Google Scholar 

  28. J. B. Johnson, “Generation and propagation of infrasonic airwaves from volcanic explosions,” J. Volcanol. Geotherm. Res. 121, 1–14 (2003). https://doi.org/10.1016/S0377-0273(02)00408-0

    Article  ADS  Google Scholar 

  29. T. Kubota, T. Saito, and K. Nishida, “Global fast-traveling tsunamis driven by atmospheric Lamb waves on the 2022 Tonga eruption,” Science 377, 91–94 (2022). https://doi.org/10.1126/science.abo4364

    Article  ADS  Google Scholar 

  30. S. N. Kulichkov, I. P. Chunchuzov, O. E. Popov, G. I. Gorchakov, A. A. Mishenin, V. G. Perepelkin, G. A. Bush, A. I. Skorokhod, Yu. A. Vinogradov, E. G. Semutnikova, J. Šepic, I. P. Medvedev, R. A. Gushchin, V. M. Kopeikin, I. B. Belikov, D. P. Gubanova, A. V. Karpov, and A. V. Tikhonov, “Acoustic-gravity Lamb waves from the eruption of the Hunga-Tonga–Hunga-Hapai volcano, its energy release and impact on aerosol concentrations and tsunami,” Pure Appl. Geophys. 179, 1533–1548 (2022). https://doi.org/10.1007/s00024-022-03046-4

    Article  ADS  Google Scholar 

  31. G. Le, G. Liu, E. Yizengaw, and C. R. Englert, “Intense equatorial electrojet and counter electrojet caused by the 15 January 2022 Tonga volcanic eruption: Space- and ground-based observations,” Geophys. Res. Lett. 49, e2022GL099002 (2022). https://doi.org/10.1029/2022GL099002

  32. J.-T. Lin, P. K. Rajesh, C. C. H. Lin, M.-Y. Chou, J.-Y. Liu, J. Yue, T.-Y. Hsiao, H.-F. Tsai, H.-M. Chao, and M.-M. Kung, “Rapid conjugate appearance of the giant ionospheric Lamb wave signatures in the northern hemisphere after Hunga-Tonga volcano eruptions,” Geophys. Res. Lett. 49, e2022GL098222 (2022). https://doi.org/10.1029/2022GL098222

  33. C. H. Liu, J. Klostermeyer, K. C. Yeh, T. B. Jones, T. Robinson, O. Holt, R. Leitinger, T. Ogawa, K. Sinno, S. Kato, T. Ogawa, A. J. Bedard, and L. Kersley, “Global dynamic responses of the atmosphere to the eruption of Mount St. Helens on May 18, 1980,” J. Geophys. Res.: Space Phys. 87, 6281–6290 (1982). https://doi.org/10.1029/JA087iA08p06281

    Article  ADS  Google Scholar 

  34. P. Lynett, “The tsunamis generated by the Hunga Tonga–Hunga Ha’apai volcano on January 15, 2022,” Preprint (Version 1) (Research Square, 2022). https://doi.org/10.21203/rs.3.rs-1377508/v1

    Book  Google Scholar 

  35. P. Lynett, M. McCann, Z. Zhou, et al., “Diverse tsunamigenesis triggered by the Hunga Tonga–Hunga Ha’apai eruption,” Nature 609, 728–733 (2022). https://doi.org/10.1038/s41586-022-05170-6

    Article  ADS  Google Scholar 

  36. R. S. Matoza, D. Fee, J. D. Assink, A. M. Iezzi, D. N. Green, K. Kim, L. Toney, T. Lecocq, S. Krishnamoorthy, J. M. Lalande, K. Nishida, K. L. Gee, M. M. Haney, H. D. Ortiz, Q. Brissaud, L. Martire, L. Rolland, P. Vergados, A. Nippress, J. Park, S. Shani-Kadmiel, A. Witsil, S. Arrowsmith, C. Caudron, S. Watada, A. B. Perttu, B. Taisne, P. Mialle, A. Le Pichon, J. Vergoz, P. Hupe, P. S. Blom, R. Waxler, S. De Angelis, J. B. Snively, A. T. Ringler, R. E. Anthony, A. D. Jolly, G. Kilgour, G. Averbuch, M. Ripepe, M. Ichihara, A. Arciniega-Ceballos, E. Astafyeva, L. Ceranna, S. Cevuard, I.-Y. Che, R. De Negri, C. W. Ebeling, L. G. Evers, L. E. Franco-Marin, T. B. Gabrielson, K. Hafner, R. G. Harrison, A. Komjathy, G. Lacanna, J. Lyons, K. A. Macpherson, E. Marchetti, K. F. McKee, R. J. Mellors, G. Mendo-Pérez, T. D. Mikesell, E. Munaibari, M. Oyola-Merced, I. Park, C. Pilger, C. Ramos, M. C. Ruiz, R. Sabatini, H. F. Schwaiger, D. Tailpied, C. Talmadge, J. Vidot, J. Webster, and D. C. Wilson, “Atmospheric waves and global seismoacoustic observations of the January 2022 Hunga eruption, Tonga,” Science 377, 95–100 (2022). https://doi.org/10.1126/science.abo7063

    Article  ADS  Google Scholar 

  37. R. S. Matoza, D. Fee, J. D. Assink, A. M. Iezzi, D. N. Green, K. Kim, L. Toney, T. Lecocq, S. Krishnamoorthy, J. M. Lalande, K. Nishida, K. L. Gee, M. M. Haney, H. D. Ortiz, Q. Brissaud, L. Martire, L. Rolland, P. Vergados, A. Nippress, J. Park, S. Shani-Kadmiel, A. Witsil, S. Arrowsmith, C. Caudron, S. Watada, A. B. Perttu, B. Taisne, P. Mialle, A. Le Pichon, J. Vergoz, P. Hupe, P. S. Blom, R. Waxler, S. De Angelis, J. B. Snively, A. T. Ringler, R. E. Anthony, A. D. Jolly, G. Kilgour, G. Averbuch, M. Ripepe, M. Ichihara, A. Arciniega-Ceballos, E. Astafyeva, L. Ceranna, S. Cevuard, I.-Y. Che, R. De Negri, C. W. Ebeling, L. G. Evers, L. E. Franco-Marin, T. B. Gabrielson, K. Hafner, R. G. Harrison, A. Komjathy, G. Lacanna, J. Lyons, K. A. Macpherson, E. Marchetti, K. F. McKee, R. J. Mellors, G. Mendo-Pérez, T. D. Mikesell, E. Munaibari, M. Oyola-Merced, I. Park, C. Pilger, C. Ramos, M. C. Ruiz, R. Sabatini, H. F. Schwaiger, D. Tailpied, C. Talmadge, J. Vidot, J. Webster, and D. C. Wilson, “Supplementary materials for "Atmospheric waves and global seismoacoustic observations of the January 2022 Hunga eruption, Tonga”,” Science 377 (2022). https://doi.org/10.1126/science.abo7063

  38. Y. Nakashima, K. Heki, A. Takeo, M. N. Cahyadi, A. Aditiya, and K. Yoshizawa, “Atmospheric resonant oscillations by the 2014 eruption of the Kelud volcano, Indonesia, observed with the ionospheric total electron contents and seismic signals,” Earth Planet. Sci. Lett. 434, 112–116 (2016). https://doi.org/10.1016/j.epsl.2015.11.029

    Article  ADS  Google Scholar 

  39. S. Otsuka, “Visualizing Lamb waves from a volcanic eruption using meteorological satellite Himawari-8,” Geophys. Res. Lett. 49, e2022GL098324 (2022). https://doi.org/10.1029/2022GL098324

  40. P. Poli and N. M. Shapiro, “Rapid characterization of large volcanic eruptions: Measuring the impulse of the Hunga Tonga Ha’apai explosion from teleseismic waves,” Geophys. Res. Lett. 49, e2022GL098123 (2022).

  41. P. K. Rajesh, C. C. H. Lin, J. T. Lin, C. Y. Lin, J. Y. Liu, T. Matsuo, et al., “Extreme poleward expanding super plasma bubbles over Asia-Pacific region triggered by Tonga volcano eruption during the recovery-phase of geomagnetic storm,” Geophys. Res. Lett. 49, e2022GL099798 (2022). https://doi.org/10.1029/2022GL099798

  42. M. T. Ramírez-Herrera, O. Coca, and V. Vargas-Espinosa, “Tsunami effects on the coast of Mexico by the Hunga Tonga–Hunga Ha’apai volcano eruption, Tonga,” Pure Appl. Geophys. 179, 1117–1137 (2022). https://doi.org/10.1007/s00024-022-03017-9

    Article  ADS  Google Scholar 

  43. D. H. Roberts, J. A. Klobuchar, P. F. Fougere, and D. H. Hendrickson, “A large-amplitude traveling ionospheric disturbance produced by the May 18, 1980, explosion of Mount St. Helens,” J. Geophys. Res.: Space Phys. 87, 6291–6301 (1982). https://doi.org/10.1029/JA087iA08p06291

    Article  ADS  Google Scholar 

  44. A. Rozhnoi, M. Hayakawa, M. Solovieva, Y. Hobara, and V. Fedun, “Ionospheric effects of the Mt. Kirishima volcanic eruption as seen from subionospheric VLF observations,” J. Atmos. Sol.-Terr. Phys. 107, 54–59 (2014). https://doi.org/10.1016/j.jastp.2013.10.014

    Article  ADS  Google Scholar 

  45. S. Saito, “Ionospheric disturbances observed over Japan following the eruption of Hunga Tonga–Hunga Ha’apai on 15 January 2022,” Earth, Planets Space 74, 57 (2022). https://doi.org/10.1186/s40623-022-01619-0

    Article  ADS  Google Scholar 

  46. N. R. Schnepf, T. Minami, H. Toh, and M. C. Nair, “Magnetic signatures of the 15 January 2022 Hunga Tonga–Hunga Ha’apai volcanic eruption,” Geophys. Res. Lett. 49, e2022GL098454 (2022).

  47. A. Shinbori, Y. Otsuka, T. Sori, M. Nishioka, S. Perwitasari, T. Tsuda, and N. Nishitani, “Electromagnetic conjugacy of ionospheric disturbances after the 2022 Hunga Tonga–Hunga Ha’apai volcanic eruption as seen in GNSS-TEC and SuperDARN Hokkaido pair of radars observations,” Earth Planets Space 74, 106 (2022). https://doi.org/10.1186/s40623-022-01665-8

    Article  ADS  Google Scholar 

  48. K. Shults, E. Astafyeva, and S. Adourian, “Ionospheric detection and localization of volcano eruptions on the example of the April 2015 Calbuco events,” J. Geophys. Res.: Space Phys. 121, 10303–10315 (2016). https://doi.org/10.1002/2016JA023382

    Article  ADS  Google Scholar 

  49. Y. Tanioka, Y. Yamanaka, and T. Nakagaki, “Characteristics of the deep sea tsunami excited offshore Japan due to the air wave from the 2022 Tonga eruption,” Earth, Planets Space 74, 61 (2022). https://doi.org/10.1186/s40623-022-01614-5

    Article  ADS  Google Scholar 

  50. J. P. Terry, J. Goff, N. Winspear, V. P. Bongolan, and S. Fisher, “Tonga volcanic eruption and tsunami, January 2022: Globally the most significant opportunity to observe an explosive and tsunamigenic submarine eruption since AD 1883 Krakatau,” Geosci. Lett. 9, 24 (2022). https://doi.org/10.1186/s40562-022-00232-z

    Article  ADS  Google Scholar 

  51. The Encyclopedia of Volcanoes, 2nd ed. (Academic, London, 2015). https://doi.org/10.1016/B978-0-12-385938-9.00063-8

  52. D. R. Themens, C. Watson, N. Žagar, S. Vasylkevych, S. Elvidge, A. McCaffrey, P. Prikryl, B. Reid, A. Wood, and P. T. Jayachandran, “Global propagation of ionospheric disturbances associated with the 2022 Tonga volcanic eruption,” Geophys. Res. Lett. 49, e2022GL098158 (2022). https://doi.org/10.1029/2022GL098158

  53. J. Vergoz, P. Hupe, C. Listowski, A. Le Pichon, M. A. Garcés, E. Marchetti, P. Labazuy, L. Ceranna, C. Pilger, P. Gaebler, S. P. Näsholm, Q. Brissaud, P. Poli, N. Shapiro, R. De Negri, and P. Mialle, “IMS observations of infrasound and acoustic-gravity waves produced by the January 2022 volcanic eruption of Hunga, Tonga: A global analysis,” Earth Planet. Sci. Lett. 591, 117639 (2022). https://doi.org/10.1016/j.epsl.2022.117639

    Article  Google Scholar 

  54. A. Witze, “Why the Tongan volcanic eruption was so shocking,” Nature 602, 376–378 (2022). https://media. nature.com/original/magazine-assets/d41586-022-00394-y/d41586-022-00394-y.pdf.

    Article  ADS  Google Scholar 

  55. C. J. Wright, N. P. Hindley, M. J. Alexander, M. Barlow, L. Hoffmann, C. N. Mitchell, F. Prata, M. Bouillon, J. Carstens, C. Clerbaux, S. M. Osprey, N. Powell, C. E. Randall, and J. Yue, “Surface-to-space atmospheric waves from Hunga Tonga–Hunga Ha’apai eruption,” Nature 609, 741–746 (2022). https://doi.org/10.1038/s41586-022-05012-5

    Article  ADS  Google Scholar 

  56. Y. Yamazaki, G. Soares, and J. Matzka, “Geomagnetic detection of the atmospheric acoustic resonance at 3.8 mHz during the Hunga Tonga eruption event on 15 January 2022,” J. Geophys. Res.: Space Phys. 127, e2022JA030540 (2022). https://doi.org/10.1029/2022JA030540

  57. D. A. Yuen, M. A. Scruggs, F. J. Spera, Y. Zheng, H. Hu, S. R. McNutt, G. Thompson, K. Mandli, B. R. Keller, S. S. Wei, Z. Peng, Z. Zhou, F. Mulargia, and Y. Tanioka, “Under the surface: Pressure-induced planetary-scale waves, volcanic lightning, and gaseous clouds caused by the submarine eruption of Hunga Tonga–Hunga Ha’apai volcano,” Earthquake Res. Adv. 2, 100134 (2022). https://doi.org/10.1016/j.eqrea.2022.100134

    Article  Google Scholar 

  58. S.-R. Zhang, J. Vierinen, E. Aa, L. P. Goncharenko, P. J. Erickson, W. Rideout, A. J. Coster, and A. Spicher, “2022 Tonga volcanic eruption induced global propagation of ionospheric disturbances via Lamb waves,” Front. Astron. Space Sci. 9, 871275 (2022). https://doi.org/10.3389/fspas.2022.871275

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to V.L. Dorokhov for his assistance in searching for the source data.

Funding

The study by L.F. Chernogor was supported by the National Research Foundation of Ukraine with project no. 2020.02/0015 Theoretical and Experimental Studies of Global Disturbances of Natural and Man-Made Origin in the Earth–Atmosphere–Ionosphere System. The study was partially supported by state budget grants from the Ministry of Education and Culture of Ukraine (state registration nos. 0121U109881 and 0122U001476).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. F. Chernogor.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Kadkin

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chernogor, L.F., Mylovanov, Y.B. Electron Density Reduction Caused by the Tonga Volcano Eruption on January 15, 2022. Kinemat. Phys. Celest. Bodies 39, 204–216 (2023). https://doi.org/10.3103/S0884591323040037

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0884591323040037

Keywords:

Navigation