Skip to main content
Log in

Physical Effects in the Atmosphere and Geospace Accompanying the Surface Explosion in the City of Beirut on August 4, 2020: Observational Data

  • DYNAMICS AND PHYSICS OF BODIES OF THE SOLAR SYSTEM
  • Published:
Kinematics and Physics of Celestial Bodies Aims and scope Submit manuscript

Abstract

On August 4, 2020, a massive explosion rocked the city of Beirut, Lebanon. The explosion yield has been estimated to be equivalent to 1 kt of TNT, and the physical effects of the explosion on the Earth–atmosphere–ionosphere–magnetosphere system have been analyzed in detail. The possible effects of powerful explosions are of considerable interest to geophysicists and radio physicists to analyze. These effects make it possible to reveal the mechanisms for transporting the disturbances in both the vertical and horizontal directions as well as the mechanisms for interaction of the subsystems in the Earth–atmosphere–ionosphere–magnetosphere system. The purpose of the present paper is to describe radio and magnetometer observations of the processes that accompanied the powerful explosion in Beirut on August 4, 2020, in the lower ionosphere and in the geomagnetic field. The observations of the possible response of the near-Earth medium to the explosion have been made with a fluxmeter magnetometer and a radio system for sounding the ionosphere at oblique incidence. The latter system detected an increase of up to 5.3° in the phase of the ionospheric wave and an increase of 3.3% in the signal amplitude caused by an electron density change of approximately 3%. If these increases are due to the explosion, the speed of propagation of the disturbance is estimated to be approximately 3 km/s. The fluxmeter magnetometer has detected changes in the character of variations in the level of the geomagnetic field occurring 5 min and 79 min after the explosion. If these variations were associated with the explosion, the speeds of propagation can be estimated to be tens of km/s and greater as well as 490 m/s. The MHD waves have a greater speed, and the acoustic gravity waves have a smaller speed, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. K. Aki and P. Richards, Quantitative Seismology: Theory and Methods (W. H. Freeman, San Francisco, Cal., 1980; Mir, Moscow, 1983).

  2. L. S. Al’perovich, M. B. Gokhberg, V. I. Drobzhev, V. A. Troitskaya, and G. V. Fedorovich, “MASSA — A project for studying the magnetosphere–atmosphere coupling during seismoacoustic phenomena,” Izv. Akad. Nauk SSSR, Fiz. Zemli, No. 11, 5–8 (1985).

    Google Scholar 

  3. E. E. Gossard and W. H. Hooke, Waves in the Atmosphere: Atmospheric Infrasound and Gravity Waves, Their Generation and Propagation (Elsevier, Amsterdam, 1975; Mir, Moscow, 1978).

  4. M. B. Gokhberg and S. L. Shalimov, Influence of Earthquakes and Explosions on the Ionosphere (Nauka, Moscow, 2008) [in Russian].

    Google Scholar 

  5. Izv. Akad. Nauk SSSR, Fiz. Zemli (Spets. Vyp.), No. 11 (1985).

  6. F. D. Stacey, Physics of the Earth (Wiley, New York, 1969; Mir, Moscow, 1972).

  7. L. F. Chernogor, “Physical processes in the near-Earth environment associated with March–April 2003 Iraq War,” Kosm. Nauka Tekhnol. 9 (2–3), 13–33 (2003).

    Article  Google Scholar 

  8. L. F. Chernogor, “The ammunition explosions on military bases as a source of ecological catastrophe in Ukraine,” Ekol. Resur., No. 10, 55–67 (2004).

  9. L. F. Chernogor, “Geophysical effects and geoecological consequences of mass chemical explosions in military warehouses in the city of Artemovsk,” Geofiz. Zh. 26 (4), 31–44 (2004).

    Google Scholar 

  10. L. F. Chernogor, “ Geophysical effects and ecological consequences of the fire at the military base near Melitopol City,” Geofiz. Zh. 26 (6), 61–73 (2004).

    Google Scholar 

  11. L. F. Chernogor, “Ecological consequences of mass chemical explosions in anthropogenic catastrophe,” Geoekol. Inzh. Geol. Gidrogeol. Geokriol., No. 6, 522–535 (2006).

  12. L. F. Chernogor, “Geoecological consequences of the explosion of an ammunition depot,” Geoekol. Inzh. Geol. Gidrogeol. Geokriol., No. 4, 359–369 (2008).

  13. L. F. Chernogor, “Advanced methods of spectral analysis of quasiperiodic wave-like processes in the ionosphere: Specific features and experimental results,” Geomagn. Aeron. (Engl. Transl.) 48, 652–673 (2008). https://doi.org/10.1134/S0016793208050101

  14. L. F. Chernogor, Physics and Ecology of Disasters (Khark. Nats. Univ. im. V. N. Karazina, Kharkiv, 2012) [in Russian].

  15. L. F. Chernogor, “Physical effects in the atmosphere and geospace accompanying the ground explosion in Beirut on August 4, 2020: Theoretical modeling results,” Kinematics Phys. Celestial Bodies 37 (3), 121–134 (2021).

    Article  ADS  Google Scholar 

  16. L. F. Chernogor and K. P. Garmash, “Disturbances in geospace associated with the Chelyabinsk meteorite passage,” Radiofiz. Radioastron. 18, 231–243 (2013).

    Google Scholar 

  17. L. F. Chernogor and K. P. Garmash, “Magnetospheric and ionospheric effects accompanying the strongest technogenic catastrophe,” Geomagn. Aeron. (Engl. Transl.) 58, 673–685 (2018). https://doi.org/10.1134/S0016793218050031

  18. L. F. Chernogor, K. P. Garmash, V. A. Podnos, and O. F. Tyrnov, “The V. N. Karazin Kharkiv National University Radiophysical Observatory — The tool for ionosphere monitoring in space experiments,” in Space Project “Ionosat-Micro”, Ed. by S. A. Zasukha and O. P. Fedorov (Akademperiodika, Kuiv, 2013), pp. 160–182 [in Russian].

  19. E. Blanc and A. R. Jacobson, “Observation of ionospheric disturbances following a 5-kt chemical explosion. 2. Prolongated anomalies and stratifications in the lower thermosphere after shock passage,” Radio Sci. 24, 739–746 (1989). https://doi.org/10.1029/RS024i006p00739

    Article  ADS  Google Scholar 

  20. E. Blanc and D. Rickel, “Nonlinear wave fronts and ionospheric irregularities observed by HF sounding over a powerful acoustic source,” Radio Sci. 24, 279–288 (1989). https://doi.org/10.1029/RS024i003p00279

    Article  ADS  Google Scholar 

  21. E. Calais, B. J. Minster, M. A. Hofton, and M. A. H. Hedlin, “Ionospheric signature of surface mine blasts from Global Positioning System measurements,” Geophys. J. Int. 132, 191–202 (1998).

    Article  ADS  Google Scholar 

  22. T. J. Fitzgerald, “Observations of total electron content perturbations on GPS signals caused by a ground level explosion,” J. Atmos. Sol.-Terr. Phys. 59, 829–834 (1997). https://doi.org/10.1016/S1364-6826(96)00105-8

    Article  ADS  Google Scholar 

  23. A. R. Jacobson, R. C. Carlos, and E. Blanc, “Observation of ionospheric disturbances following a 5-kt chemical explosion. 1. Persistent oscillation in the lower thermosphere after shock passage,” Radio Sci. 23, 820–830 (1988). https://doi.org/10.1029/RS023i005p00820

    Article  ADS  Google Scholar 

Download references

Funding

L.F. Chernogor’s research was carried out as part of the project of the National Research Foundation of Ukraine (no. 2020.02/0015 Theoretical and Experimental Studies of Global Disturbances of Natural and Manmade Origin in the Earth–Atmosphere–Ionosphere Systems). The work of L.F. Chernogor and K.P. Garmash was in part supported within the state budgetary research program of the Ministry of Education and Science of Ukraine (registration numbers 0119U002538, 0121U109881, and 0121U109882).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. F. Chernogor.

Additional information

Translated by M. Chubarova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chernogor, L.F., Garmash, K.P. Physical Effects in the Atmosphere and Geospace Accompanying the Surface Explosion in the City of Beirut on August 4, 2020: Observational Data. Kinemat. Phys. Celest. Bodies 37, 183–192 (2021). https://doi.org/10.3103/S0884591321040036

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0884591321040036

Keywords:

Navigation