Skip to main content
Log in

Physical Effects of the Yushu Meteoroid: 2

  • SPACE PHYSICS
  • Published:
Kinematics and Physics of Celestial Bodies Aims and scope Submit manuscript

Abstract—

A comprehensive modeling of the processes in all geospheres caused by the fall and explosion of the Yushu meteoroid in the Qinghai Province (People’s Republic of China) on December 22, 2020, was performed. Thermodynamic and plasma effects, as well as the effects of the plume and turbulence, accompanying the passage of the Yushu meteoroid were estimated. It is shown that the passage of the celestial body led to the formation of a gas and dust plume. The heated meteoroid wake cooled down for several hours. Four stages of cooling of the meteoroid wake are considered. The first of them lasted approximately 0.2 s, and the temperature of the wake decreased by half due to radiation. During the second stage (~3 s), cooling continued due to radiation and expansion of the wake, and the temperature decreased by 20%. During the third stage, which lasted 6 s, the explosion products and heated gas (thermal column) with an acceleration of approximately 30 m/s2 rose at a speed of 140 m/s, and the temperature decreased by 10%. The fourth stage lasted approximately 50 s, the thermal column intensively absorbed cold air, gradually cooled, and slowed down. The maximum height of the thermal column reached 7–8 km. The explosion products (dust particles and aerosols) that were part of the thermal column were subsequently involved in three processes: slow settling to the Earth’s surface, turbulent mixing with the surrounding air, and transportation by prevailing winds around the planet. It is shown that the effect of turbulence in the meteoroid’s wake was well expressed, while magnetic turbulence had hardly any effect. The main parameters of the plasma in the wake are estimated: height dependences of the linear and volume electron densities, values of their relaxation times, particle collision frequencies, plasma specific conductivity, and relaxation times of the electron temperature. It is shown that the linear and volume electron densities in the wake at the initial moment were 1019–4 × 1022 m–1 and 1017–1021 m–3 and the plasma specific conductivity was of the order of 103 Ω–1m–1. The role of the dust component of the plasma is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. N. A. Artem’eva and V. V. Shuvalov, “Atmospheric plume of the Chelyabinsk meteoroid,” in Dynamic Processes in Geospheres: Collection of Scientific Papers of the Institute of Geosphere Dynamics, Russian Academy of Sciences, Special Issue, Vol. 5: Geodesic Effects of the Fall of Chelyabinsk Meteoroid (GEOS, Moscow, 2014), pp. 134–146 [in Russian].

  2. V. A. Bronshten, Physics of Meteor Phenomena (Nauka, Moscow, 1981; Springer-Verlag, Dordrecht, 1983).

  3. V. A. Bronshten, “A magneto-hydrodynamic mechanism for generating radio waves by bright fireballs,” Sol. Syst. Res. 17, 70–74 (1983).

    Google Scholar 

  4. V. A. Bronshten, “The entry of the large meteoroids into the atmosphere,” Astron. Vestn. 27 (1), 102–121 (1993).

    ADS  Google Scholar 

  5. V. A. Bronshten, “About physical mechanism of the large meteor bodies quasicontinuous fragmentation,” Astron. Vestn. 27 (3), 65–74 (1993).

    ADS  Google Scholar 

  6. V. A. Bronshten, “The way to use Grigor’yan theory for calculating giant meteoroids fragmentation,” Sol. Syst. Res. 28, 118—122 (1994).

    Google Scholar 

  7. V. A. Bronshten, “Crushing and destruction of large meteoric bodies in the atmosphere,” Astron. Vestn. 29 (5), 450–459 (1995).

    Google Scholar 

  8. B. E. Bryunelli and A. A. Namgaladze, Physics of the Ionosphere (Nauka, Moscow, 1988).

    Google Scholar 

  9. V. L. Ginzburg, Propagation of Electromagnetic Waves in Plasma (Nauka, Moscow, 1967; Addison Wesley, London, 1960).

  10. N. N. Gor’kavyi, D. S. Likharev, and D. N. Minnibaev, “Color variations of the aerosol plume of the Chelyabinsk bolide,” in The Chelyabinsk Meteorite — One Year on the Earth: Proc. All-Russian Sci. Conf., Chelyabinsk, Russia, Feb. 14–15, 2014, Ed. by N. A. Antipin, et al. (Kamennyi Poyas, Chelyabinsk, 2014), pp. 118–123.

  11. N. N. Gor’kavyi and T. A. Taidakova, “Interaction of the Chelyabinsk bolide with the atmosphere,” in The Chelyabinsk Meteorite — One Year on the Earth: Proc. All-Russian Sci. Conf., Chelyabinsk, Russia, Feb. 14–15, 2014, Ed. by N. A. Antipin, et al. (Kamennyi Poyas, Chelyabinsk, 2014), pp. 124–129.

  12. N. N. Gor’kavyi, T. A. Taidakova, E. A. Provornikova, et al., “Aerosol plume of the Chelyabinsk bolide,” in The Chelyabinsk Meteorite — One Year on the Earth: Proc. All-Russian Sci. Conf., Chelyabinsk, Russia, Feb. 14–15, 2014, Ed. by N. A. Antipin, et al. (Kamennyi Poyas, Chelyabinsk, 2014), pp. 130–135.

  13. S. S. Grigoryan, “On meteorites motion and fragmentation in planets atmospheres,” Kosm. Issled. 17, 875–893 (1979).

    ADS  Google Scholar 

  14. Dynamic Processes in Geospheres: Collection of Scientific Papers of the Institute of Geosphere Dynamics, Russian Academy of Sciences, Special Issue, Vol. 5: Geodesic Effects of the Fall of Chelyabinsk Meteoroid (GEOS, Moscow, 2014) [in Russian].

  15. V. V. Emel’yanenko, O. P. Popova, N. N. Chugai, et al., “Astronomical and physical aspects of the Chelyabinsk event. (February 15, 2013),” Astron. Vestn. 47, 262–277 (2013).

    Google Scholar 

  16. Catastrophic Events Caused by Cosmic Objects, Ed. by V. V. Adushkin and I. V. Nemchinov (Akademkniga, Moscow, 2005; Springer-Verlag, Dordrecht, 2008).

  17. The Chelyabinsk Meteorite — One Year on the Earth: Proc. All-Russian Sci. Conf., Chelyabinsk, Russia, Feb. 14–15, 2014, Ed. by N. A. Antipin, (Kamennyi Poyas, Chelyabinsk, 2014).

    Google Scholar 

  18. V. P. Stulov, V. N. Mirskii, and A. I. Vislyi, Aerodynamics of Bolides (Nauka, Moscow, 1995) [in Russian].

    Google Scholar 

  19. Chelyabinsk Superbolide, Ed. by N. N. Gor’kavyi and A. E. Dudorov (Chelyab. Gos. Univ., Chelyabinsk, 2016; Springer-Verlag, Cham, 2019). https://doi.org/10.1007/978-3-030-22986-3

  20. L. F. Chernogor, Physics and Ecology of Catastrophes: Monograph (Khark. Nats. Univ. im. V. N. Karazina, Kharkiv, 2012) [in Russian].

  21. L. F. Chernogor, “Plasma, electromagnetic, and acoustic effects of the "Chelyabinsk” meteorite,” Inzh. Fiz. 8, 23–40 (2013).

    Google Scholar 

  22. L. F. Chernogor, “Physical effects of the Chelyabinsk meteorite passage,” Dopov. Nats. Akad. Nauk Ukr., No. 10, 97–104 (2013).

  23. L. F. Chernogor, “Basic effects of Chelyabinsk meteoroid fall: The results of physical-mathematic simulation,” in The Chelyabinsk Meteorite — One Year on the Earth: Proc. All-Russian Sci. Conf., Chelyabinsk, Russia, Feb. 14–15, 2014, Ed. by N. A. Antipin, et al. (Kamennyi Poyas, Chelyabinsk, 2014), pp. 229–264.

  24. L. F. Chernogor, “Atmospheric effects of the gas–dust plume of the Chelyabinsk meteoroid of 2013,” Izv., Atmos. Ocean. Phys. 53, 259–268 (2017). https://doi.org/10.1134/S0001433817030033

    Article  Google Scholar 

  25. L. F. Chernogor, “Magnetic and ionospheric effects of a meteoroid plume,” Geomagn. Aeron. (Engl. Transl.) 58, 119–126 (2018).

  26. L. F. Chernogor, “The physical effects of the Romanian meteoroid. 1,” Kosm. Nauka Tekhnol. 24 (1), 49–70 (2018). https://doi.org/10.15407/knit2018.01.049

    Article  Google Scholar 

  27. L. F. Chernogor, “The physical effects of Romanian meteoroid. 2,” Kosm. Nauka Tekhnol. 24 (2), 18–35 (2018). https://doi.org/10.15407/knit2018.02.018

    Article  Google Scholar 

  28. L. F. Chernogor, “Physical effects of the Lipetsk meteoroid. 2,” Kinematics Phys. Celestial Bodies 35, 217–230 (2019).

    Article  ADS  Google Scholar 

  29. L. F. Chernogor and Yu. B. Mylovanov, “Rise of a meteoroid thermal in the Earth’s atmosphere,” Kinematics Phys. Celestial Bodies 34, 198–206 (2018).

    Article  ADS  Google Scholar 

  30. L. F. Chernogor, “Physical effects of the Yushu meteoroid: 1,” Kinematics Phys. Celestial Bodies 38, 132–147 (2022).

    Article  ADS  Google Scholar 

  31. L. F. Chernogor and V. T. Rozumenko, “The physical effects associated with Chelyabinsk meteorite’s passage,” Probl. At. Sci. Technol. 86 (4), 136–139 (2013).

    Google Scholar 

  32. N. N. Gorkavyi, T. A. Taidakova, and E. A. Provornikova, “Aerosol plume after the Chelyabinsk bolide,” Sol. Syst. Res. 47, 275–279 (2013).

    Article  ADS  Google Scholar 

  33. S. S. Grigoryan, “Physical mechanism of Chelyabinsk superbolide explosion,” Sol. Syst. Res. 47, 268–274 (2013).

    Article  ADS  Google Scholar 

  34. J. G. Hills and M. P. Goda, “The fragmentation of small asteroids in the atmosphere,” Astron. J. 105, 1114–1144 (1993).

    Article  ADS  Google Scholar 

  35. D. M. Hunten, R. P. Turco, O. B. Toon, et al., “Smoke and dust particles of meteoric origin in the mesosphere and stratosphere,” J. Atmos. Sci. 37, 1342–1357 (1980).

    Article  ADS  Google Scholar 

  36. O. P. Popova, P. Jenniskens, V. Emel’yanenko, A. Kartashova, E. Biryukov, S. Khaibrakhmanov, V. Shuvalov, Y. Rybnov, A. Dudorov, V. I. Grokhovsky, D. D. Badyukov, Q.-Z. Yin, P. S. Gural, J. Albers, M. Granvik, L. G. Evers, J. Kuiper, V. Kharlamov, A. Solovyov, Yu. S. Rusakov, S. Korotkiy, I. Serdyuk, A. V. Korochantsev, M. Yu. Larionov, D. Glazachev, A. E. Mayer, G. Gisler, S. V. Gladkovsky, J. Wimpenny, M. E. Sanborn, A. Yamakawa, K. L. Verosub, D. J. Rowland, S. Roeske, N. W. Botto, J. M. Friedrich, M. E. Zolensky, L. Le, D. Ross, K. Ziegler, T. Nakamura, I. Ahn, J. I. Lee, Q. Zhou, X.-H. Li, Q.-L. Li, Liu Yu, G.-Q. Tang, T. Hiroi, D. Sears, I. A. Weinstein, A. S. Vokhmintsev, A. V. Ishchenko, P. Schmitt-Kopplin, N. Hertkorn, K. Nagao, M. K. Haba, M. Komatsu, and T. Mikouchi, “Chelyabinsk airburst, damage assessment, meteorite, and characterization,” Science 342, 1069–1073 (2013).

    Article  ADS  Google Scholar 

  37. O. P. Popova, P. Jenniskens, V. Emel’yanenko, A. Kartashova, E. Biryukov, S. Khaibrakhmanov, V. Shuvalov, Y. Rybnov, A. Dudorov, V. I. Grokhovsky, D. D. Badyukov, Q.-Z. Yin, P. S. Gural, J. Albers, M. Granvik, L. G. Evers, J. Kuiper, V. Kharlamov, A. Solovyov, Yu. S. Rusakov, S. Korotkiy, I. Serdyuk, A. V. Korochantsev, M. Yu. Larionov, D. Glazachev, A. E. Mayer, G. Gisler, S. V. Gladkovsky, J. Wimpenny, M. E. Sanborn, A. Yamakawa, K. L. Verosub, D. J. Rowland, S. Roeske, N. W. Botto, J. M. Friedrich, M. E. Zolensky, L. Le, D. Ross, K. Ziegler, T. Nakamura, I. Ahn, J. I. Lee, Q. Zhou, X.-H. Li, Q.-L. Li, Liu Yu, G.-Q. Tang, T. Hiroi, D. Sears, I. A. Weinstein, A. S. Vokhmintsev, A. V. Ishchenko, P. Schmitt-Kopplin, N. Hertkorn, K. Nagao, M. K. Haba, M. Komatsu, and T. Mikouchi, “Supplementary material for Chelyabinsk airburst, damage assessment, meteorite recovery, and characterization,” Science 342 (2013).

  38. R. W. Schunk and A. Nagy, Ionospheres: Physics, Plasma Physics, and Chemistry (Cambridge Univ. Press, Cambridge, 2000).

    Book  Google Scholar 

Download references

Funding

This work was supported by the National Research Foundation of Ukraine, project no. 2020.02/0015 (Theoretical and Experimental Studies of Global Disturbances of Natural and Man-Made Origin in the Earth–Atmosphere–Ionosphere System), and the Ministry of Education and Science of Ukraine (project nos. 0121U109881 and 0122U001476).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. F. Chernogor.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by O. Pismenov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chernogor, L.F. Physical Effects of the Yushu Meteoroid: 2. Kinemat. Phys. Celest. Bodies 39, 123–136 (2023). https://doi.org/10.3103/S0884591323030029

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0884591323030029

Keywords:

Navigation