Skip to main content
Log in

Physical Effects from the Kyiv Meteoroid: 2

  • SPACE PHYSICS
  • Published:
Kinematics and Physics of Celestial Bodies Aims and scope Submit manuscript

Abstract

Comprehensive modeling studies of the thermal, turbulent, and plasma processes induced in all geospheres by the passage and explosion of the Kyiv meteoroid on April 19, 2023, were performed. Thermodynamic and plasma effects, as well as the effects and turbulence, accompanying the passage of the Kyiv meteoroid were estimated. It has been shown that the passage of the celestial body led to the formation of a gas-dust plume. The heated trail of the meteoroid cooled for several seconds. A simplified one-dimensional model of plume motion in the vertical direction is considered. The acceleration and speed of the plume are estimated. It has been shown that the initial acceleration of the plume initially reached a maximum value of 117 m/s2 and lasted ~1 ms. Its speed increased from 0 to ~1 m/s, then gradually decreased to 0 m/s. At this speed, the height of the plume’s ascent hardly increased. The products of the explosion contained in the thermal, specks of dust and aerosols, further took part in the following three processes: a slow precipitation to the surface of the Earth, turbulent mixing with the ambient air, and transport by the predominant winds around the globe. The effect of turbulence in the trail has been shown to be well-pronounced, while the effect of magnetic turbulence has been shown to be absent. The following basic parameters of the plasma in the trail have been estimated: the height dependences of the electron densities per unit length and per unit volume, their relaxation times, the particle collision frequencies, the plasma specific conductivities, and the electron temperature relaxation time. At the initial moment, the linear and volume electron densities in the trail have been shown to be equal to approximately 1017–1023 and 1017–1022 m–3, respectively, and the plasma specific conductivity to be equal to ~103 Ohm–1 m–1. The role of the dusty plasma component was insignificant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. N. A. Artem’eva and V. V. Shuvalov, “Atmospheric plume of the Chelyabinsk meteoroid,” in Dynamic Processes in Geospheres: Collection of Scientific Papers of the Institute of Geosphere Dynamics of the Russian Academy of Sciences, Vol. 5 (Special Issue): Geophysical Effects of the Chelyabinsk Meteoroid’s Fall (GEOS, Moscow, 2014), 134–146 [in Russian].

  2. V. A. Bronshten, Physics of Meteor Phenomena (Nauka, Moscow, 1981; Springer-Verlah, Dordrecht, 1983).

  3. V. A. Bronshten, “A magneto-hydrodynamic mechanism for generating radio waves by bright fireballs,” Sol. Syst. Res. 17, 70–74 (1983).

    Google Scholar 

  4. V. A. Bronshten, “The entry of the large meteoroids into the atmosphere,” Astron. Vestn. 27, 102–121 (1993).

    ADS  Google Scholar 

  5. V. A. Bronshten, “About physical mechanism of the large meteor bodies quasicontinuous fragmentation,” Astron. Vestn. 27, 65–74 (1993).

    ADS  Google Scholar 

  6. V. A. Bronshten, “The way to use Grigor’yan theory for calculating giant meteoroids fragmentation,” Astron. Vestn. 28, 118—124 (1994).

    ADS  Google Scholar 

  7. V. A. Bronshten, “Crushing and destruction of large meteoric bodies in the atmosphere,” Astron. Vestn. 29, 450–459 (1995).

    Google Scholar 

  8. B. E. Bryunelli and A. A. Namgaladze, Physics of the Ionosphere (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  9. V. L. Ginzburg, The Propagation of Electromagnetic Waves in Plasmas (Nauka, Moscow, 1967; Pergamon, Oxford, 1970).

  10. N. N. Gor’kavyi, D. S. Likharev, and D. N. Minnibaev, “Color variations of the aerosol plume of the Chelyabinsk bolide,” in The Chelyabinsk Meteorite — One Year on the Earth: Proc. All-Russian Sci. Conf., Chelyabinsk, Russia, Feb. 14–15, 2014, Ed. by N. A. Antipin, et al. (Kamennyi Poyas, Chelyabinsk, 2014), pp. 118—123.

  11. N. N. Gor’kavyi and T. A. Taidakova, “Interaction of the Chelyabinsk bolide with the atmosphere,” in The Chelyabinsk Meteorite — One Year on the Earth: Proc. All-Russian Sci. Conf., Chelyabinsk, Russia, Feb. 14–15, 2014, Ed. by N. A. Antipin, et al. (Kamennyi Poyas, Chelyabinsk, 2014), pp. 124–129.

  12. N. N. Gor’kavyi, T. A. Taidakova, E. A. Provornikova, et al., “Aerosol plume of the Chelyabinsk bolide,” in The Chelyabinsk Meteorite — One Year on the Earth: Proc. All-Russian Sci. Conf., Chelyabinsk, Russia, Feb. 14–15, 2014, Ed. by N. A. Antipin, et al. (Kamennyi Poyas, Chelyabinsk, 2014), pp. 130–135.

  13. S. S. Grigoryan, “On meteorites motion and fragmentation in planets atmospheres,” Kosm. Issled. 17, 875–893 (1979).

    ADS  Google Scholar 

  14. Dynamic Processes in Geospheres: Collection of Scientific Papers of the Institute of Geosphere Dynamics of the Russian Academy of Sciences, Vol. 5 (Special Issue): Geophysical Effects of the Chelyabinsk Meteoroid’s Fall (GEOS, Moscow, 2014).

  15. V. V. Emel’yanenko, O. P. Popova, N. N. Chugai, et al., “Astronomical and physical aspects of the Chelyabinsk event (February 15, 2013),” Astron. Vestn. 47, 240–254 (2013).

    Google Scholar 

  16. Catastrophic Events Caused by Cosmic Objects, Ed. by V. V Adushkin, and I. V. Nemchinov, (Akademkniga, Moscow, 2005; Springer-Verlag, Dordrecht, 2008).

  17. The Chelyabinsk Meteorite — One Year on the Earth: Proc. All-Russian Sci. Conf., Chelyabinsk, Russia, Feb. 14–15, 2014, Ed. by N. A. Antipin, et al. (Kamennyi Poyas, Chelyabinsk, 2014) [in Russian].

  18. V. P. Stulov, V. N. Mirskii, and A. I. Vislyi, Aerodynamics of Bolides (Nauka, Moscow, 1995) [in Russian].

    Google Scholar 

  19. Chelyabinsk Superbolide, Ed. by N. N. Gor’kavyi and A. E. Dudorov (Izd. Chelyab. Univ., Chelyabinsk, 2016; Springer-Verlag, Cham, 2019). https://doi.org/10.1007/978-3-030-22986-3

  20. L. F. Chernogor, Physics and Ecology of Catastrophes: Monograph (Khark. Nats. Univ. im. V. N. Karazina, Kharkov, 2012) [in Russian].

  21. L. F. Chernogor, “Plasma, electromagnetic, and acoustic effects of the "Chelyabinsk” meteorite,” Inzh. Fiz. 8, 23–40 (2013).

    Google Scholar 

  22. L. F. Chernogor, “Physical effects of the Chelyabinsk meteorite passage,” Dopov. Akad. Nauk Ukr., No. 10, 97–104 (2013).

  23. L. F. Chernogor, “Basic effects of Chelyabinsk meteoroid fall: the results of physical-mathematic simulation,” in The Chelyabinsk Meteorite — One Year on the Earth: Proc. All-Russian Sci. Conf., Chelyabinsk, Russia, Feb. 14–15, 2014, Ed. by N. A. Antipin, et al. (Kamennyi Poyas, Chelyabinsk, 2014), pp. 229–264.

  24. L. F. Chernogor, “Atmospheric effects of the gas-dust plume of the Chelyabinsk meteoroid of 2013,” Izv., Atmos. Ocean. Phys. 53, 259–268 (2017). https://doi.org/10.1134/S0001433817030033

    Article  Google Scholar 

  25. L. F. Chernogor, “Magnetic and ionospheric effects of a meteoroid plume,” Geomagn. Aeron. (Engl. Transl.) 58, 119–126 (2018).

  26. L. F. Chernogor, “The physical effects of Romanian meteoroid. 1,” Kosm. Nauka Tekhnol. 24 (1), 49–70 (2018).

    Article  Google Scholar 

  27. L. F. Chernogor, “The physical effects of the Romanian meteoroid. 2,” Kosm. Nauka Tekhnol. 24 (2), 18–35 (2018).

    Article  Google Scholar 

  28. L. F. Chernogor, “Physical effects of the Lipetsk meteoroid: 1,” Kinematics Phys. Celestial Bodies 35, 174–188 (2019). https://doi.org/10.3103/S0884591319040020

    Article  ADS  Google Scholar 

  29. L. F. Chernogor, “Physical effects of the Lipetsk meteoroid: 2,” Kinematics Phys. Celestial Bodies 35, 217–230 (2019).

    Article  ADS  Google Scholar 

  30. L. F. Chernogor, “Physical effects of the Lipetsk meteoroid: 3,” Kinematics Phys. Celestial Bodies 35, 271–285 (2019). https://doi.org/10.3103/S0884591319060023

    Article  ADS  Google Scholar 

  31. L. F. Chernogor, “Physical effects of the Yushu meteoroid: 1,” Kinematics Phys. Celestial Bodies 38, 132–147 (2022).

    Article  ADS  Google Scholar 

  32. L. F. Chernogor, “Physical effects of the Yushu meteoroid: 2,” Kinematics Phys. Celestial Bodies 39, 123–136 (2023). https://doi.org/10.3103/S0884591323030029

    Article  ADS  Google Scholar 

  33. L. F. Chernogor, “Physical effects of the Yushu meteoroid: 3,” Kinematics Phys. Celestial Bodies 39, 137–153 (2023). https://doi.org/10.3103/S0884591323030030

    Article  ADS  Google Scholar 

  34. L. F. Chernogor, “Physical effects of the Kyiv meteoroid. 1,” Kinematics Phys. Celestial Bodies 39 (5) (2023) (in press). https://doi.org/10.15407/kfnt2023.05.024

  35. L. F. Chernogor and V. T. Rozumenko, “The physical effects associated with Chelyabinsk meteorite’s passage,” Probl. At. Sci. Technol. 86, 136–139 (2013).

    Google Scholar 

  36. N. N. Gorkavyi, T. A. Taidakova, and E. A. Provornikova, “Aerosol plume after the Chelyabinsk bolide,” Sol. Syst. Res. 47, 275–279 (2013).

    Article  ADS  Google Scholar 

  37. S. S. Grigoryan, “Physical mechanism of Chelyabinsk superbolide explosion,” Sol. Syst. Res. 47, 268–274 (2013).

    Article  ADS  Google Scholar 

  38. J. G. Hills and M. P. Goda, “The fragmentation of small asteroids in the atmosphere,” Astron. J. 105, 1114–1144 (1993).

    Article  ADS  Google Scholar 

  39. D. M. Hunten, R. P. Turco, O. B. Toon, et al., “Smoke and dust particles of meteoric origin in the mesosphere and stratosphere,” J. Atmos. Sci. 37, 1342—1357 (1980).

    Article  ADS  Google Scholar 

  40. O. P. Popova, P. Jenniskens, V. Emel’yanenko, A. Kartashova, E. Biryukov, S. Khaibrakh¬manov, V. Shuvalov, Y. Rybnov, A. Dudorov, V. I. Grokhovsky, D. D. Badyukov, Q.-Z. Yin, P. S. Gural, J. Albers, M. Granvik, L. G. Evers, J. Kuiper, V. Kharlamov, A. Solovyov, Yu. S. Rusakov, S. Korotkiy, I. Serdyuk, A. V. Korochantsev, M. Yu. Larionov, D. Glazachev, A. E. Mayer, G. Gisler, S. V. Gladkovsky, J. Wimpenny, M. E. Sanborn, A. Yamakawa, K. L. Verosub, D. J. Rowland, S. Roeske, N. W. Botto, J. M. Friedrich, M. E. Zolensky, L. Le, D. Ross, K. Ziegler, T. Nakamura, I. Ahn, J. I. Lee, Q. Zhou, X.-H. Li, Q.-L. Li, Liu Yu, G.-Q. Tang, T. Hiroi, D. Sears, I. A. Weinstein, A. S. Vokhmintsev, A. V. Ishchenko, P. Schmitt-Kopplin, N. Hertkorn, K. Nagao, M. K. Haba, M. Komatsu, and T. Mikouchi, “Chelyabinsk airburst, damage assessment, meteorite, and characterization,” Science 342, 1069–1073 (2013).

    Article  ADS  Google Scholar 

  41. O. P. Popova, P. Jenniskens, V. Emel’yanenko, A. Kartashova, E. Biryukov, S. Khaibrakhmanov, V. Shuvalov, Y. Rybnov, A. Dudorov, V. I. Grokhovsky, D. D. Badyukov, Q.-Z. Yin, P. S. Gural, J. Albers, M. Granvik, L. G. Evers, J. Kuiper, V. Kharlamov, A. Solovyov, Yu. S. Rusakov, S. Korotkiy, I. Serdyuk, A. V. Korochantsev, M. Yu. Larionov, D. Glazachev, A. E. Mayer, G. Gisler, S. V. Gladkovsky, J. Wimpenny, M. E. Sanborn, A. Yamakawa, K. L. Verosub, D. J. Rowland, S. Roeske, N. W. Botto, J. M. Friedrich, M. E. Zolensky, L. Le, D. Ross, K. Ziegler, T. Nakamura, I. Ahn, J. I. Lee, Q. Zhou, X.-H. Li, Q.-L. Li, Liu Yu, G.-Q. Tang, T. Hiroi, D. Sears, I. A. Weinstein, A. S. Vokhmintsev, A. V. Ishchenko, P. Schmitt-Kopplin, N. Hertkorn, K. Nagao, M. K. Haba, M. Komatsu, and T. Mikouchi, “Supplementary material for: Chelyabinsk airburst, damage assessment, meteorite recovery, and characterization,” Science 342 (2013).

  42. R. W. Schunk and A. Nagy, Ionospheres: Physics, Plasma Physics, and Chemistry (Cambridge Univ. Press, Cambridge, 2000).

    Book  Google Scholar 

Download references

Funding

The study was supported by the National Research Foundation of Ukraine within project no. 2020.02/0015 “Theoretical and Experimental Studies of Global Perturbations of Natural and Man-Made Origin in the Earth–Atmosphere–Ionosphere System.” The work was also supported by State Budget grants provided (state registration numbers 0121U109881 and 0122U001476).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. F. Chernogor.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chernogor, L.F. Physical Effects from the Kyiv Meteoroid: 2. Kinemat. Phys. Celest. Bodies 39, 313–324 (2023). https://doi.org/10.3103/S088459132306003X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S088459132306003X

Keywords:

Navigation