Skip to main content
Log in

Ionospheric Effects of the June 10, 2021, Solar Eclipse in the Arctic

  • DYNAMICS AND PHYSICS OF BODIES OF THE SOLAR SYSTEM
  • Published:
Kinematics and Physics of Celestial Bodies Aims and scope Submit manuscript

Abstract

Solar eclipses (SEs) cause a variety of processes in all geospheres. There is a decrease of electron density, as well as electron, ion, and neutral temperature, in the ionosphere; the dynamics of ionospheric plasma changes significantly, wave disturbances are generated, and the interaction between subsystems in the Earth–atmosphere–ionosphere–magnetosphere system increases. It has been proven that SE effects depend on the solar eclipse magnitude, geographical coordinates, time of day, season, atmospheric and space weather conditions, position in the solar cycle, and other factors. In addition to recurring or regular effects, there are effects specific to a given SE. For this reason, the study of physical processes in all geospheres caused by SEs is an urgent interdisciplinary problem. The purpose of this work is to present the results of the observation and analysis of time disturbances of the vertical total electron content (TEC) in the Arctic. The data used in this study include the parameters of signals received by a network of stations from navigation satellites passing over the Moon’s shadow, where the SE magnitude was approximately 0.9 in the latitude range 70…80° N. The annular solar eclipse of June 10, 2021, began at 08:12:20 UT and ended at 13:11:19 UT. The Moon’s shadow appeared first over Canada then moved across Greenland, the Arctic Ocean, the North Pole, and the New Siberian Island. The Moon’s shadow covered the northern part of the Russian Federation. Partial SE was observed in northern and middle parts of Europe, most of the Russian Federation, Mongolia, and China. Using 11 ground stations that received GPS signals from 8 satellites, the authors studied the spatial and temporal variations of the TEC during the maximum coverage of the solar disk, which was observed in the Arctic, and found the following. The decrease in electron density for each station and each satellite was observed almost immediately after the beginning of SE and lasted approximately 60…100 min. The minimum TEC value was then detected, followed by an increase to the initial value or higher. The average TEC was 6.4…10.4 TECU. The average decrease in TEC was 2.3 ± 0.6 TECU from 8.4 ± 1.6 TECU. In relative units, the decrease ranged –16.5…–46% (average value –30 ± 9.7%). The time delay between the start of the minimum TEC value relative to the maximum SE magnitude was determined. It varied within 5…30 min (mean value was 18.3 ± 8.5 min). In some cases, quasi-periodic variations in TEC with a period of 9…15 min and a relative amplitude of 3…5% were observed during the SE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. E. L. Afraimovich and N. P. Perevalova, GPS Monitoring of the Earth’s Upper Atmosphere (Inst. Soln.-Zemn. Fiz. Sib. Otd. Ross. Akad. Nauk, Irkutsk, 2006) [in Russian].

    Google Scholar 

  2. B. E. Bryunelli and A. V. Namgaladze, Physics of the Ionosphere (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  3. V. P. Burmaka, I. F. Domnin, and L. F. Chernogor, “Radiophysical observations of acoustic–gravity waves in the ionosphere during solar eclipse of January 4, 2011,” Radiofiz. Radioastron. 17, 344–352 (2012).

    Google Scholar 

  4. K. P. Garmash, S. G. Leus, and L. F. Chernogor, “January 4, 2011 solar eclipse effects over radio circuits at oblique incidence,” Radiofiz. Radioastron. 16, 164–176 (2011). http://rpra-journal.org.ua/index.php/ra/article/view/442.

  5. L. F. Chernogor, Radio Physical and Geomagnetic Effects of Rocket Launches (Khark. Nats. Univ. im. V. N. Karazina, Kharkiv, 2009) [in Russian].

  6. L. F. Chernogor, Physics and Ecology of Disasters: Monograph (Khark. Nats. Univ. im. V. N. Karazina, Kharkiv, 2012) [in Russian].

  7. L. F. Chernogor, Physical Effects of Solar Eclipses in Atmosphere and Geospace: Monograph (Khark. Nats. Univ. im. V. N. Karazina, Kharkiv, 2013) [in Russian].

  8. L. F. Chernogor, K. P. Garmash, V. A. Podnos, and O. F. Tyrnov, “The V. N. Karazin Kharkiv National University Radio Physical Observatory — The tool for ionosphere monitoring in space experiments,” in Space Project IONOSAT-MICRO (Akademperiodika, Kyiv, 2013), pp. 160–182 [in Russian].

  9. L. F. Chernogor, “Geomagnetic effect of the solar eclipse of June 10, 2021,” Kinematics Phys. Celestial Bodies 38, 11–24 (2022).

    Article  ADS  Google Scholar 

  10. L. F. Chernogor, “Convection effect in the surface atmosphere of solar eclipses of March 20, 2015, and June 10, 2021,” Kinematics Phys. Celestial Bodies 37, 284–292 (2021). https://doi.org/10.3103/S0884591321060039

    Article  ADS  Google Scholar 

  11. L. F. Chernogor, “Thermal effect in surface atmosphere of the solar eclipse on June 10, 2021,” Kinematics Phys. Celestial Bodies 37, 293–299 (2021). https://doi.org/10.3103/S0884591321060040

    Article  ADS  Google Scholar 

  12. L. F. Chernogor and K. P. Garmash, “Ionospheric processes during the partial solar eclipse above Kharkiv on June 10, 2021,” Kinematics Phys. Celestial Bodies 38, 61–72 (2021).

    Article  ADS  Google Scholar 

  13. L. F. Chornogor, K. P. Garmash, Ye. H. Zhdanko, S. G. Leus, and V. A. Podnos, “Software and hardware system of multi-frequency oblique sounding the ionosphere,” Visn. Khark. Nats. Univ. im. V. N. Karazina, Ser.: Radiofiz. Elektron. 30, 42–59 (2020). https://doi.org/10.26565/2311-0872-2020-33-04

    Article  Google Scholar 

  14. L. F. Chornogor, K. P. Garmash, Ye. H. Zhdanko, S. G. Leus, and Y. Luo, “Features of ionospheric effects from the partial solar eclipse over the city of Kharkiv on 10 June 2021,” Radiofiz. Radioastron. 26, 326–343 (2021).

    Google Scholar 

  15. L. F. Chornogor, M. Yu. Holub, Y. Luo, A. M. Tsymbal, and M. B. Shevelev, “Variations in the geomagnetic field that accompanied the 10 June 2021 solar eclipse,” Visn. Khark. Nats. Univ. im. V. N. Karazina, Ser.: Radiofiz. Elektron. 34 (2021).

  16. L. F. Chernogor and Yu. B. Mylovanov, “Ionospheric effects of the August 11, 2018, solar eclipse over the People’s Republic of China,” Kinematics Phys. Celestial Bodies 36, 274–290 (2020).

    Article  ADS  Google Scholar 

  17. B. J. Adekoya and V. U. Chukwuma, “Ionospheric F2 layer responses to total solar eclipses at low and mid-latitude,” J. Atmos. Sol.-Terr. Phys. 138–139, 136–160 (2016). https://doi.org/10.1016/j.jastp.2016.01.006

    Article  ADS  Google Scholar 

  18. W. J. G. Beynon and G. M. Brown, Solar Eclipses and the Ionosphere (Pergamon, London, 1956).

    Google Scholar 

  19. V. P. Burmaka and L. F. Chernogor, “Solar eclipse of August 1, 2008, above Kharkov: 2. Observation results of wave disturbances in the ionosphere,” Geomagn. Aeron. (Engl. Transl.) 53, 479–491 (2013). https://doi.org/10.1134/S001679321304004X

  20. S. Chapman, “The influence of a solar eclipse upon the upper atmospheric ionization,” Mon. Not. R. Astron. Soc. 92, 413–420 (1932).

    Article  ADS  Google Scholar 

  21. G. Chen, C. Wu, X. Huang, Z. Zhao, D. Zhong, H. Qi, L. Huang, L. Qiao, and J. Wang, “Plasma flux and gravity waves in the midlatitude ionosphere during the solar eclipse of 20 May 2012,” J. Geophys. Res.: Space Phys. 120, 3009–3020 (2015). https://doi.org/10.1002/2014JA020849

    Article  ADS  Google Scholar 

  22. G. Chen, Z. Zhao, B. Ning, Z. Deng, G. Yang, C. Zhou, M. Yao, S. Li, and N. Li, “Latitudinal dependence of the ionospheric response to solar eclipse of 15 January 2010,” J. Geophys. Res.: Space Phys. 116, A06301 (2011).https://doi.org/10.1029/2010JA016305

    Article  ADS  Google Scholar 

  23. I. Cherniak and I. Zakharenkova, “Ionospheric total electron content response to the Great American Solar Eclipse of 21 August 2017,” Geophys. Res. Lett. 45, 1199–1208 (2018). https://doi.org/10.1002/2017GL075989

    Article  ADS  Google Scholar 

  24. L. F. Chernogor, “Variations in the amplitude and phase of VLF radiowaves in the ionosphere during the August 1, 2008, solar eclipse,” Geomagn. Aeron. (Engl. Transl.) 50, 96–106 (2010). https://doi.org/10.1134/S0016793210010111

  25. L. F. Chernogor, “Wave response of the ionosphere to the partial solar eclipse of August 1, 2008,” Geomagn. Aeron. (Engl. Transl.) 50, 346–361 (2010). https://doi.org/10.1134/S0016793210030096

  26. L. F. Chernogor, “The Earth–atmosphere–geospace system: Main properties and processes,” Int. J. Remote Sens. 32, 3199–3218 (2011). https://doi.org/10.1080/01431161.2010.541510

    Article  Google Scholar 

  27. L. F. Chernogor, “Effects of solar eclipses in the ionosphere: Results of Doppler sounding: 1. Experimental data,” Geomagn. Aeron. (Engl. Transl.) 52, 768–778 (2012). https://doi.org/10.1134/S0016793212050039

  28. L. F. Chernogor, “Effects of solar eclipses in the ionosphere: Doppler sounding results: 2. Spectral analysis,” Geomagn. Aeron. (Engl. Transl.) 52, 779–792 (2012). https://doi.org/10.1134/S0016793212050040

  29. L. F. Chernogor, “Physical processes in the middle ionosphere accompanying the solar eclipse of January 4, 2011, in Kharkov,” Geomagn. Aeron. (Engl. Transl.) 53, 19–31 (2013). https://doi.org/10.1134/S0016793213010052

  30. L. F. Chernogor, “Wave processes in the ionosphere over Europe that accompanied the solar eclipse of March 20, 2015,” Kinematics Phys. Celestial Bodies 32, 196–206 (2016). https://doi.org/10.3103/S0884591316040024

    Article  ADS  Google Scholar 

  31. L. F. Chernogor, “Atmosphere–ionosphere response to solar eclipse over Kharkiv on March 20, 2015,” Geomagn. Aeron. (Engl. Transl.) 56, 592–603 (2016). https://doi.org/10.1134/S0016793216050030

  32. L. F. Chernogor and V. T. Rozumenko, “Earth–atmosphere–geospace as an open nonlinear dynamical system,” Radiofiz. Radioastron. 13, 120–137 (2008). http://rpra-journal.org.ua/index.php/ra/article/view/563

  33. L. F. Chernogor and K. P. Garmash, “Magneto-ionospheric effects of the solar eclipse of March 20, 2015, over Kharkov,” Geomagn. Aeron. (Engl. Transl.) 57, 72–83 (2017). https://doi.org/10.1134/S0016793216060062

  34. L. F. Chernogor, I. F. Domnin, L. Ya. Emelyanov, and M. V. Lyashenko, “Physical processes in the ionosphere during the solar eclipse on March 20, 2015 over Kharkiv, Ukraine (49.6° N, 36.3° E),” J. Atmos. Sol.-Terr. Phys. 182, 1–9 (2019). https://doi.org/10.1016/j.jastp.2018.10.016

    Article  ADS  Google Scholar 

  35. A. J. Coster, L. Goncharenko, S. R. Zhang, P. J. Erickson, W. Rideout, and J. Vierinen, “GNSS observations of ionospheric variations during the 21 August 2017 solar eclipse,” Geophys. Res. Lett. 44, 12041–12048 (2017).https://doi.org/10.1002/2017GL075774

    Article  ADS  Google Scholar 

  36. Crustal Dynamics Data Information System (CDDIS DAAC). 2014. International GNSS Service, Daily 30-Second Observation Data. ftp://cddis.nasa.gov/gnss/products/bias/. https://webigs.ign.fr/gdc/en/data/search.

  37. T. Dang, J. Lei, W. Wang, A. Burns, B. Zhang, and S.-R. Zhang, “Suppression of the polar tongue of ionization during the 21 August 2017 solar eclipse,” Geophys. Res. Lett. 45, 2918–2925 (2018). https://doi.org/10.1002/2018GL077328

    Article  ADS  Google Scholar 

  38. T. Dang, J. Lei, W. Wang, B. Zhang, A. Burns, H. Le, Q. Wu, H. Ruan, X. Dou, and W. Wan, “Global responses of the coupled thermosphere and ionosphere system to the August 2017 Great American Solar Eclipse,” J. Geophys. Res.: Space Phys. 123, 7040–7050 (2018). https://doi.org/10.1029/2018JA025566

    Article  ADS  Google Scholar 

  39. F. Ding, W. Wan, B. Ning, L. Liu, H. Le, G. Xu, M. Wang, G. Li, Y. Chen, Z. Ren, B. Xiong, L. Hu, X. Yue, B. Zhao, F. Li, and M. Yang, “GPS TEC response to the 22 July 2009 total solar eclipse in East Asia,” J. Geophys. Res.: Space Phys. 115, A07308 (2010). https://doi.org/10.1029/2009JA015113

    Article  ADS  Google Scholar 

  40. I. F. Domnin, L. Y. Yemelʼyanov, D. V. Kotov, M. V. Lyashenko, and L. F. Chernogor, “Solar eclipse of August 1, 2008, above Kharkov: 1. Results of incoherent scatter observations,” Geomagn. Aeron. (Engl. Transl.) 53, 113–123 (2013). https://doi.org/10.1134/S0016793213010076

  41. W. H. Eccles, “Effect of the eclipse on wireless telegraphic signals,” Electrician 69, 109–117 (1912).

    Google Scholar 

  42. F. Espenak, “Annular Solar Eclipse of 2021 Jun 10” (2021). http://www.eclipsewise.com/solar/SEprime/2001-2100/ SE2021Jun10Aprime.html.

  43. E. E. Gossard and W. H. Hooke, Waves in the Atmosphere: Atmospheric Infrasound and Gravity Waves: Their Generation and Propagation (Elsevier, New York, 1975).

    Google Scholar 

  44. Q. Guo, L. F. Chernogor, K. P. Garmash, V. T. Rozumenko, and Y. Zheng, “Radio monitoring of dynamic processes in the ionosphere over China during the partial solar eclipse of 11 August 2018,” Radio Sci. 55, e2019RS006866 (2020). https://doi.org/10.1029/2019RS006866

  45. A. J. Higgs, “Ionospheric measurements made during the total solar eclipse of 1940 October 1,” Mon. Not. R. Astron. Soc. 102, 24–34 (1942). https://doi.org/10.1093/mnras/102.1.24

    Article  ADS  Google Scholar 

  46. B. Hofmann-Wellenhof, H. Lichtenegger, and J. Collins, Global Positioning System. Theory and Practice (Springer-Verlag, Wien, 2001).

    Book  Google Scholar 

  47. J. D. Huba and D. Drob, “SAMI3 prediction of the impact of the 21 August 2017 total solar eclipse on the ionosphere/plasmasphere system,” Geophys. Res. Lett. 44, 5928–5935 (2017). https://doi.org/10.1002/2017GL073549

    Article  ADS  Google Scholar 

  48. H. Le, L. Liu, F. Ding, Z. Ren, Y. Chen, W. Wan, B. Ning, G. Xu, M. Wang, G. Li, B. Xiong, and L. Hu, “Observations and modeling of the ionospheric behaviors over the East Asia zone during the 22 July 2009 solar eclipse,” J. Geophys. Res.: Space Phys. 115, A10313 (2010). https://doi.org/10.1029/2010JA015609

    Article  ADS  Google Scholar 

  49. P. G. Ledig, M. W. Jones, A. A. Giesecke, and E. J. Chernosky, “Effects on the ionosphere at Huancayo, Peru, of the solar eclipse, January 25, 1944,” Terr. Magn. Atmos. Electr. 51, 411–418 (1946). https://doi.org/10.1029/TE051i003p00411

    Article  Google Scholar 

  50. M. V. Lyashenko and L. F. Chernogor, “Solar eclipse of August 1, 2008, over Kharkov: 3. Calculation results and discussion,” Geomagn. Aeron. (Engl. Transl.) 53, 367–376 (2013). https://doi.org/10.1134/S0016793213020096

  51. M. K. Madhav Haridas and G. Manju, “On the response of the ionospheric F region over Indian low-latitude station Gadanki to the annular solar eclipse of 15 January 2010,” J. Geophys. Res.: Space Phys. 117, A01302 (2012). https://doi.org/10.1029/2011JA016695

    Article  ADS  Google Scholar 

  52. G. J. Marlton, P. D. Williams, and K. A. Nicoll, “On the detection and attribution of gravity waves generated by the 20 March 2015 solar eclipse,” Philos. Trans. R. Soc. A 374, 20150222 (2016), https://doi.org/10.1098/rsta.2015.0222

    Article  ADS  Google Scholar 

  53. S. L. Marple, Jr., Digital Spectral Analysis: With Applications (Prentice-Hall, Englewood Cliffs, N.J., 1987).

    Google Scholar 

  54. S. V. Panasenko, Y. Otsuka, M. van de Kamp, L. F. Chernogor, A. Shinbori, T. Tsugawa, and M. Nishioka, “Observation and characterization of traveling ionospheric disturbances induced by solar eclipse of 20 March 2015 using incoherent scatter radars and GPS networks,” J. Atmos. Sol.-Terr. Phys. 191, 105051 (2019). https://doi.org/10.1016/j.jastp.2019.05.015

    Article  Google Scholar 

  55. F. Pitout, P.-L. Blelly, and D. Alcayde, “High-latitude ionospheric response to the solar eclipse of 1 August 2008: EISCAT observations and TRANSCAR simulation,” J. Atmos. Sol.-Terr. Phys. 105, 336–349 (2013).https://doi.org/10.1016/j.jastp.2013.02.004

    Article  ADS  Google Scholar 

  56. R. W. Schunk and A. F. Nagy, Ionospheres: Physics, Plasma Physics, and Chemistry (Cambridge Univ. Press, Cambridge, 2000), in Ser.: Cambridge Atmospheric and Space Science Series.

  57. S. Sharma, N. Dashora, P. Galav, and R. Pandey, “Total solar eclipse of July 22, 2009: Its impact on the total electron content and ionospheric electron density in the Indian zone,” J. Atmos. Sol.-Terr. Phys. 72, 1387–1392 (2010). https://doi.org/10.1016/j.jastp.2010.10.006

    Article  ADS  Google Scholar 

  58. S. M. Stankov, N. Bergeot, D. Berghmans, D. Bolsée, C. Bruyninx, J. M. Chevalier, F. Clette, H. De Backer, J. De Keyser, E. DʼHuys, M. Dominique, J. F. Lemaire, J. Magdalenić, C. Marqué, N. Pereira, V. Pierrard, D. Sapundjiev, D. B. Seaton, K. Stegen, R. V. Linden, T. G. W. Verhulst, and M. J. West, “Multi-instrument observations of the solar eclipse on 20 March 2015 and its effects on the ionosphere over Belgium and Europe,” J. Space Weather Space Clim. 7, A19 (2017). https://doi.org/10.1051/swsc/2017017

    Article  Google Scholar 

  59. The Receiver Independent Exchange Format. Version 3.02. International GNSS Service (IGS).

  60. Universität Bern, Astronomisches Institut. http://ftp.aiub.unibe.ch/CODE/. http://www.aiub.unibe.ch/ download/ CODE/.

  61. V. P. Uryadov, A. A. Kolchev, F. I. Vybornov, V. V. Shumaev, A. I. Egoshin, and A. G. Chernov, “Ionospheric effects of a solar eclipse of March 20, 2015 on oblique sounding paths in the Eurasian longitudinal sector,” Radiophys. Quantum Electron. 59, 431–441 (2016).https://doi.org/10.1007/s11141-016-9711-9

    Article  ADS  Google Scholar 

  62. T. G. W. Verhulst, D. Sapundjiev, and S. M. Stankov, “High-resolution ionospheric observations and modeling over Belgium during the solar eclipse of 20 March 2015 including first results of ionospheric tilt and plasma drift measurements,” Adv. Space Res. 57, 2407–2419 (2016). https://doi.org/10.1016/j.asr.2016.03.009

    Article  ADS  Google Scholar 

  63. N. Wang, Y. Yuan, Z. Li, O. Montenbruck, and B. Tan, “Determination of differential code biases with multi-GNSS observations,” J. Geod. 90, 209–228 (2016).https://doi.org/10.1007/s00190-015-0867-4

    Article  ADS  Google Scholar 

  64. W. Wang, T. Dang, J. Lei, S. Zhang, B. Zhang, and A. Burns, “Physical processes driving the response of the F2 region ionosphere to the 21 August 2017 solar eclipse at Millstone Hill,” J. Geophys. Res.: Space Phys. 124, 2978–2991 (2019). https://doi.org/10.1029/2018JA025479

    Article  ADS  Google Scholar 

  65. World Data Center for Geomagnetism, Kyoto. http://wdc.kugi.kyoto-u.ac.jp.

  66. S.-R. Zhang, P. J. Erickson, L. P. Goncharenko, A. J. Coster, W. Rideout, and J. Vierinen, “Ionospheric bow waves and perturbations induced by the 21 August 2017 solar eclipse,” Geophys. Res. Lett. 44, 12067–12073 (2017). https://doi.org/10.1002/2017GL076054

    Article  ADS  Google Scholar 

Download references

Funding

The work of L.F. Chernogor was supported by the National Research Foundation of Ukraine, project no. 2020.02/0015 (Theoretical and Experimental Studies of Global Disturbances of Natural and Technogenic Origin in the Earth–Atmosphere–Ionosphere System). The work of L.F. Chernogor and Yu.B. Mylovanov was supported by the Ministry of Education and Science of Ukraine (project nos. 0121U109881, 0121U109882, and 0122U001476).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. F. Chernogor.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Pismenov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chernogor, L.F., Mylovanov, Y.B. Ionospheric Effects of the June 10, 2021, Solar Eclipse in the Arctic. Kinemat. Phys. Celest. Bodies 38, 197–209 (2022). https://doi.org/10.3103/S088459132204002X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S088459132204002X

Keywords:

Navigation