Skip to main content
Log in

Ionospheric Effects of a Solar Eclipse of March 20, 2015 on Oblique Sounding Paths in the Eurasian Longitudinal Sector

  • Published:
Radiophysics and Quantum Electronics Aims and scope

The results of measuring HF signals on oblique chirp sounding paths in the Eurasian region during a solar eclipse of March 20, 2015 and the neighboring days are presented. The solar eclipse took place against the background of a strong magnetic storm. It was established that during the solar eclipse on oblique sounding paths of different length and orientation the decrease in the maximum observable frequency for the F mode (MOF-F) and the lowest observable frequency for the F mode (LOF-F) was 8–14% and 22–33%, respectively. During the eclipse, the signal amplitude increased by 3–5 dB. On the Lovozero—Nizhny Novgorod path in the maximum phase of the solar eclipse, the electron density decrease in the ionospheric E and F2 layers at the midpoint of the path reached 37% and 22%, respectively. According to the MOF and LOF variation measurements for various modes, the group delay time of radio signals, and the results of spectral analysis, it was found that in the eclipse there were wave disturbances with a period of 25 to 50 min. However, quasi-periodic variations of MOF-F and LOF-F having a a period of 50 to 80 min but which started before the eclipse were detected on some paths. Probably, in these cases, the variations were a result of the superposition of disturbances from two sources, namely, the magnetic storm and the solar eclipse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. C. Buther, A. M. Downing, and K. D. Kole, J. Atmos. Terr. Phys., 41, No. 5, 439 (1979).

    Article  ADS  Google Scholar 

  2. H. Le, L. Liu, X. Yue, and W. Wan, Ann. Geophys., 26, No. 1, 107 (2008).

    Article  ADS  Google Scholar 

  3. A. A. Kovalev, A. G. Kolesnik, S.A. Kolesnik, and A.A. Kolmakov, Soln. Zemn. Fiz., 2, No. 12, 233 (2008).

    Google Scholar 

  4. V. P. Uryadov, A. M. Leonov, A. A.Ponyatov, et al., Radiophys. Quantum Electron., 43, No. 8, 614 (2000).

  5. G. G. Vertogradov, E. G. Vertogradova, and V. P. Uryadov, Élektromagn. Volny Élektron. Sist., 18, No. 9, 14 (2013).

  6. G. Chen, C. Wu, X. Huang, et al., J. Geophys. Res. Space Phys., 120, No. 4, 3009 (2015).

    Article  ADS  Google Scholar 

  7. E. L. Afraimovich, E. A. Kosogorov, and O. S. Lesyuta, J. Atmos. Sol.-Terr. Phys., 64, 1933 (2002).

  8. S. B. Kashcheev, A. V. Zalizovsky, A. V. Koloskov, et al., Radiofiz. Radioastron., 14, No. 4, 353 (2009).

    Google Scholar 

  9. M. J. Baron and R. D. Hunsucker, J. Geophys. Res., 78, No. 31, 7451 (1973).

    Article  ADS  Google Scholar 

  10. G. Chimonas and C. O. Hines, J. Geophys. Res., 75, No. 4, 875 (1970).

    Article  ADS  Google Scholar 

  11. T. B. Jones, D. M. Wright, J. Milner, et al., J. Atmos. Sol.-Terr. Phys., 66, No. 5, 363 (2004).

    Article  ADS  Google Scholar 

  12. C. Hanuise, P. Broche, and G. Ogubazghi, J. Atmos. Terr. Phys., 44, No. 11, 963 (1982).

    Article  ADS  Google Scholar 

  13. D. C. Fritts and Z. Luo, J. Geophys. Res., 98, No. D2, 3011 (1993).

    Article  ADS  Google Scholar 

  14. D. Altadill and J. G. Solé, J. Geophys. Res., 106, No. A10, 21419 (2001).

  15. G. Chen, Z. Zhao, Y. Zhang, et al., J. Geophys. Res., 116, A09314 (2011).

  16. E. Gerasopoulos, et al., Atmos. Chem. Phys., 8, No. 17, 5205 (2008).

    Article  ADS  Google Scholar 

  17. http://sec.noaa.gov/ .

  18. http://www.sgo.fi/ .

  19. B. E. Bryunelli and A. A.Namgaladze, Physics of the Ionosphere [in Russian], Nauka, Moscow (1988).

  20. A. D. Danilov, J. Atm. Solar Terr. Phys., 63, No. 5, 441 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  21. A. D. Danilov and L. D. Belik, Geomagn. Aéron., 31, No. 2, 209 (1991).

  22. R. D. Hunsucker, IEEE Proc. Antennas Propag., 40, 818 (1992).

    Article  ADS  Google Scholar 

  23. S. E. Milan, M. Lester, T. B. Jones, and E. M. Warrington, J. Atmos. Solar Terr. Phys., 60, No. 6, 617 (1998).

    Article  ADS  Google Scholar 

  24. J. LaBelle, Ann. Geophys., 22, No. 5, 1705 (2004).

    Article  ADS  Google Scholar 

  25. V. P. Uryadov, A. A. Ponyatov, G. G. Vertogradov, et al., Int. J. Geomagn. Aeron., 6, No. 1, GI1002 (2005).

  26. http://eclipse.gsfc.nasa.gov .

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Uryadov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 59, No. 6, pp. 477–488, June 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uryadov, V.P., Kolchev, A.A., Vybornov, F.I. et al. Ionospheric Effects of a Solar Eclipse of March 20, 2015 on Oblique Sounding Paths in the Eurasian Longitudinal Sector. Radiophys Quantum El 59, 431–441 (2016). https://doi.org/10.1007/s11141-016-9711-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-016-9711-9

Navigation