Skip to main content
Log in

Results of Observations of Wave Motions in the Solar Facula

  • SOLAR PHYSICS
  • Published:
Kinematics and Physics of Celestial Bodies Aims and scope Submit manuscript

Abstract—

The results of spectropolarimetric and filter observations of the facular region in the lines Fe I 1564.3, Fe I 1565.8 nm, Ba II 455.4 nm, and Ca II H 396.8 nm obtained near the center of the solar disk at the German Vacuum Tower Telescope (Tenerife, Spain) are discussed. It is shown that the facular contrast at the center of the Ca II H line increases more slowly as the magnetic field strength increases and, then it begins to decrease if the field increases further. It is concluded that the reason for such behavior is the nonlinear height dependence of the line source function due to the deviation from the local thermodynamic equilibrium. It is found that waves propagating both upward and downward can be observed in any area of the facula, regardless of its brightness. In bright areas with a strong magnetic field, upward waves predominate, while downward waves are more often observed in less bright areas with a weak field. It is shown that the facular contrast measured at the center of the Ca II H line correlates with the power of wave velocity oscillations. In bright areas, it increases with the power regardless of the direction in which the waves propagate. In facular regions with decreased brightness, the opposite dependence is observed for both types of waves. In turn, the power of wave velocity oscillations is sensitive to the field strength magnitude. In the magnetic elements of the facula with increased brightness, the stronger the field, the higher the power of oscillations of both upward and downward waves. In areas with decreased brightness, the inverse dependence is observed. It is concluded that the contrast increase with the increase in the power of wave velocity oscillations observed in bright areas of the facula can be considered as evidence that these areas look bright not only because of the Wilson depression but also because of the heating of the solar plasma by the waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. V. Abbasvand, M. Sobotka, P. Heinzel, et al., “Chromospheric heating by acoustic waves compared to radiative cooling. II. Revised grid of models,” Astrophys. J. 890, 22 (2020).

    ADS  Google Scholar 

  2. C. Beck, E. Khomenko, R. Rezaei, and M. Collados, “The energy of waves in the photosphere and lower chromosphere. I. Velocity statistics,” Astron. Astrophys. 507, 453–467 (2009).

    Article  ADS  Google Scholar 

  3. T. E. Berger, L. H. M. Rouppe van der Voort, M. G. Löfdahl, et al., “Solar magnetic elements at 0.1 arcsec resolution. General appearance and magnetic structure,” Astron. Astrophys. 428, 613–628 (2004).

    Article  ADS  Google Scholar 

  4. P. S. Cally and E. Khomenko, “Fast-to-Alfvén mode conversion mediated by the Hall current. I. Cold plasma model,” Astrophys. J. 814, 106 (2015).

    Article  ADS  Google Scholar 

  5. M. Carlsson, R. F. Stein, Å. Nordlund, and G. B. Scharmer, “Observational manifestations of solar magnetoconvection: Center-to-limb variation,” Astrophys. J., Lett. 610, L137–L140 (2004).

    Article  ADS  Google Scholar 

  6. M. Collados, A. Lagg, J. J. Díaz García, et al., “Tenerife infrared polarimeter II,” in The Physics of Chromospheric Plasmas: Proc. Coimbra Solar Physics Meeting, Coimbra, Portugal, Oct. 9–13, 2006, Ed. by P. Heinzel, I. Dorotovič, and R. J. Rutten (Astronomical Society of the Pacific, San Francisco, Calif., 2007), in Ser.: ASP Conference Series, Vol. 368, pp. 611–616.

  7. O. Gingerich, R. W. Noyes, W. Kalkofen, and Y. Cuny, “The Harvard-Smithsonian reference atmosphere,” Sol. Phys. 18, 347–365 (1971).

    Article  ADS  Google Scholar 

  8. P. A. Gonzalez-Morales, E. Khomenko, N. Vitas, and M. Collados, “Joint action of Hall and ambipolar effects in 3D magneto-convection simulations of the quiet Sun. I. Dissipation and generation of waves,” Astron. Astrophys. 642, A220–A237 (2020).

    Article  ADS  Google Scholar 

  9. J. Hirzberger and E. Wiehr, “Solar limb faculae,” Astron. Astrophys. 438, 1059–1065 (2005).

    Article  ADS  Google Scholar 

  10. C. U. Keller, M. Schüssler, A. Vögler, and V. Zakharov, “On the origin of solar faculae,” Astrophys. J., Lett. 607, L59–L62 (2004).

    Article  ADS  Google Scholar 

  11. E. Khomenko, “Simulations of waves in sunspots,” in Proc. Solar-Stellar Dynamos as Revealed by Helio- and Asteroseismology: GONG 2008 / SOHO 21, Boulder, Colorado, Aug. 11–15, 2008, Ed. by M. Dikpati, T. Arentoft, I. González Hernández, C. Lindsey, and F. Hill (Astronomical Society of the Pacific, San Francisco, Calif., 2009), in Ser.: ASP Conference Proceedings, Vol. 416, pp. 31–40.

  12. E. Khomenko and P. S. Cally, “Numerical simulations of conversion to Alfvén Waves in sunspots,” Astrophys. J. 746, 68 (2012).

    Article  ADS  Google Scholar 

  13. E. Khomenko and M. Collados, “Heating of the magnetized solar chromosphere by partial ionization effects,” Astrophys. J. 747, 87–97 (2012).

    Article  Google Scholar 

  14. E. Khomenko, N. Vitas, M. Collados, and Á. de Vicente, “Three-dimensional simulations of solar magneto-convection including effects of partial ionization,” Astron. Astrophys. 618, A87–102 (2018).

    Article  ADS  Google Scholar 

  15. P. Kobel, S. K. Solanki, and J. M. Borrero, “The continuum intensity as a function of magnetic field. I. Active region and quiet Sun magnetic elements,” Astron. Astrophys. 531, A112–A123 (2011).

    Article  ADS  Google Scholar 

  16. R. I. Kostik and E. Khomenko, “Observations of a bright plume in solar granulations,” Astron. Astrophys. 476, 341–347 (2007).

    Article  ADS  Google Scholar 

  17. R. Kostik and E. Khomenko, “Properties of convective motions in facular regions,” Astron. Astrophys. 545, A22–A30 (2012).

    Article  ADS  Google Scholar 

  18. R. Kostik and E. Khomenko, “Properties of oscillatory motions in a facular region,” Astron. Astrophys. 559, A107–A116 (2013).

    Article  ADS  Google Scholar 

  19. R. Kostik and E. Khomenko, “The possible origin of facular brightness in the solar atmosphere,” Astron. Astrophys. 589, A6–A12 (2016).

    Article  ADS  Google Scholar 

  20. R. I. Kostyk, “What mechanisms allow 5-minute oscillations in active regions of the solar surface to penetrate from the photosphere into the chromosphere?,” Kinematics Phys. Celestial Bodies 31, 188–192 (2015).

    Article  ADS  Google Scholar 

  21. R. I. Kostyk, “Effect of wave motions in the active region of the solar surface on convection,” Kinematics Phys. Celestial Bodies 34, 82–87 (2018).

    Article  ADS  Google Scholar 

  22. J. L. Linsky and H. E. Avrett, “The Solar H and K lines,” Publ. Astron. Soc. Pac. 82, 169–248 (1972).

    Article  ADS  Google Scholar 

  23. M. Montagne, R. Mueller, and J. Vigneau, “The photosphere of the Sun: Statistical correlations between magnetic field, intensity and velocity,” Astron. Astrophys. 311, 304–310 (1996).

    ADS  Google Scholar 

  24. G. Narayan and G. B. Scharmer, “Small-scale convection signatures associated with a strong plage solar magnetic field,” Astron. Astrophys. 524, A3–A18 (2010).

    Article  ADS  Google Scholar 

  25. O. V. Okunev and F. Kneer, “On the structure of polar faculae on the Sun,” Astron. Astrophys. 425, 321–331 (2004).

    Article  ADS  Google Scholar 

  26. O. V. Okunev and F. Kneer, “Numerical modeling of solar faculae close to the limb,” Astron. Astrophys. 439, 323–334 (2005).

    Article  ADS  Google Scholar 

  27. B. Popescu Braileanu, V. S. Lukin, E. Khomenko, and Á. de Vicente, “Two-fluid simulations of waves in the solar chromosphere. II. Propagation and damping of fast magneto-acoustic waves and shocks,” Astron. Astrophys. 630, A79–A96 (2019).

    Article  ADS  Google Scholar 

  28. S. P. Rajaguru, C. R. Sangeetha, and D. Tripathi, “Magnetic fields and the supply of low-frequency acoustic wave energy to the solar chromosphere,” Astrophys. J. 871, 155 (2019).

    Article  ADS  Google Scholar 

  29. R. Rezaei, J. H. M. J. Bruls, W. Schmidt, C. Beck, W. Kalkofen, and R. Schlichenmaier, “Reversal-free Ca II H profiles: A challenge for solar chromosphere modeling in quiet internetwork,” Astron. Astrophys. 484, 503–509 (2008).

    Article  ADS  Google Scholar 

  30. B. Ruiz Cobo and J. C. del Toro Iniesta, “Inversion of Stokes profiles,” Astrophys. J. 398, 375–385 (1992).

    Article  ADS  Google Scholar 

  31. E. H. Schroeter, D. Soltau, and E. Wiehr, “The German solar telescopes at the Observatorio del Teide,” Vistas Astron. 28, 519–525 (1985).

    Article  ADS  Google Scholar 

  32. N. G. Shchukina, V. L. Olshevsky, and E. V. Khomenko, “The solar Ba II 4554 Å line as a Doppler diagnostic: NLTE analysis in 3D hydrodynamical model,” Astron. Astrophys. 506, 1393–1404 (2009).

    Article  ADS  Google Scholar 

  33. S. Shelyag, E. Khomenko, Á. de Vicente, and D. Przybylski, “Heating of the partially ionized solar chromosphere by waves in magnetic structures,” Astrophys. J., Lett. 819, L11–L16 (2016).

    Article  Google Scholar 

  34. M. Sobotka, P. Heinzel, M. Svanda, et al., “Chromospheric heating by acoustic waves compared to radiative cooling,” Astrophys. J. 826, 49–56 (2016).

    Article  Google Scholar 

  35. S. K. Solanki, “Small scale solar magnetic fields — An overview,” Space Sci. Rev. 63, 188 (1993).

    Article  Google Scholar 

  36. H. C. Spruit, “Pressure equilibrium and energy balance of small photospheric flux tubes,” Sol. Phys. 50, 269–295 (1976).

    Article  ADS  Google Scholar 

  37. A. K. Srivastava, J. L. Ballester, P. S. Cally, and et. al., “Chromospheric heating by MHD waves and instabilities,” J. Geophys. Res.: Space Phys. 126, e2020JA029097 (2021). arXiv 2104.02010

  38. M. Stangalini, D. Del Moro, F. Berrilli, and S. M. Jeeries, “MHD wave transmission in the Sun’s atmosphere,” Astron. Astrophys. 534, A65–A71 (2011).

    Article  ADS  Google Scholar 

  39. R. Stebbins and P. R. Goode, “Waves in the solar photosphere,” Sol. Phys. 110, 237–253 (1987).

    Article  ADS  Google Scholar 

  40. O. Steiner, “Radiative properties of magnetic elements. II. Center to limb variation of the appearance of photospheric faculae,” Astron. Astrophys. 430, 691–700 (2005).

    Article  ADS  Google Scholar 

  41. A. M. Title, K. P. Topka, T. D. Tarbell, et al., “On the differences between plage and quiet Sun in the solar photosphere,” Astrophys. J. 393, 782–794 (1992).

    Article  ADS  Google Scholar 

  42. K. P. Topka, T. D. Tarbell, and A. M. Title, “Properties of the smallest solar magnetic elements. I. Facular contrast near sun center,” Astrophys. J. 396, 351–363 (1992).

    Article  ADS  Google Scholar 

  43. K. P. Topka, T. D. Tarbell, and A. M. Title, “Properties of the smallest solar magnetic elements. II. Observations versus hot wall models of faculae,” Astrophys. J. 484, 479–486 (1997).

    Article  ADS  Google Scholar 

  44. A. Tritschler, W. Schmidt, K. Langhans, and T. Kentischer, “High-resolution solar spectroscopy with TESOS — Upgrade from a double to a triple system,” Sol. Phys. 211, 17–29 (2002).

    Article  ADS  Google Scholar 

  45. A. Vögler, “On the effect of photospheric magnetic fields on solar surface brightness. Results of radiative MHD simulations,” Mem. Soc. Astron. Ital. 76, 842–849 (2005).

    ADS  Google Scholar 

  46. A. Vögler, S. Shelyag, M. Schussler, et al., “Simulations of magneto-convection in the solar photosphere. Equations, methods, and results of the MURaM code,” Astron. Astrophys. 429, 335–351 (2005).

    Article  ADS  Google Scholar 

  47. A. Wilson, “Observations on the solar spots,” Philos. Trans. 64, 1–30 (1774).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. G. Shchukina or R. I. Kostik.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by O. Pismenov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shchukina, N.G., Kostik, R.I. Results of Observations of Wave Motions in the Solar Facula. Kinemat. Phys. Celest. Bodies 38, 49–60 (2022). https://doi.org/10.3103/S0884591322010056

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0884591322010056

Keywords:

Navigation