Skip to main content
Log in

The Fe IX Line at 17.1 nm in the Radiation Spectrum of Slow Magneto-Acoustic Waves Propagating in the Solar Corona

  • SOLAR PHYSICS
  • Published:
Kinematics and Physics of Celestial Bodies Aims and scope Submit manuscript

Abstract—

Profiles of the Fe IX line at a wavelength of λ = 17.1 nm in the radiation spectrum of slow magneto-acoustic waves, propagating in coronal loops, are calculated under conditions of an optically thin layer and a constant density. The parameter values used in calculations of the line profiles are as follows: the amplitude of the velocity of particles’ displacements in a wave v0 = 10 km/s, the width of the coronal loop is 2000 and 5000 km, the wavelength Λ = 20 000 km and 50 000 km, and the value of the Doppler width Δλd = 1 pm; the values for the angle of view and the wave phases were varied. The true value of the energy flux density is 622 erg/cm2s. The values of the energy flux density obtained in calculations strongly depend on the angle of view θ and the wave phase: they range from 0 and, when the values of θ are large, to 2000 erg/cm2s. The values of the Doppler velocities vd and the velocities of nonthermal motions vnt take maximal values of ~12 km/s at small angles θ and almost vanish at large angles θ. When the angle of view is small (θ < 30°), a weak blue asymmetry is noticeable. When the angle of view is large (θ > 30°), the asymmetry is almost invisible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. M. J. Aschwanden, Physics of the Solar Corona — An Introduction, 1st ed. (Praxis, Chichester, 2004).

    Google Scholar 

  2. D. H. Brooks and H. P. Warren, “Measurements of non-thermal line widths in solar active regions,” Astrophys. J. 820, 63 (2016).

    Article  ADS  Google Scholar 

  3. E. C. Bruner, “Dynamics of the solar transition zone,” Astrophys. J. 226, 1140–1146 (1978).

    Article  ADS  Google Scholar 

  4. W. Surdt, T. J. Wang, D. E. Innes, S. K. Solanki, I. E. Damasch, B. Kliem, and L. Ofman, “Doppler oscillations in hot coronal loops,” in Solar Variability: From Core to Outer Frontiers: Proc. 10th Eur. Solar Physics Meeting, Prague, Czech Republic, Sept. 9–14, 2002, Ed. by A. Wilson (European Space Agency, Noordwijk, 2002), Vol. 2, pp. 581–584.

  5. I. De Moortel, “An overview of coronal seismology,” Philos. Trans. R. Soc. London A 363, 2743–2760 (2005).

    ADS  Google Scholar 

  6. I. De Moortel, “Propagating magnetohydrodynamics waves in coronal loops,” Philos. Trans. R. Soc. London A 364, 461 (2006).

    ADS  Google Scholar 

  7. I. De Moortel, “Longitudinal waves in coronal loops,” Space Sci. Rev. 149, 65–81 (2009).

    Article  ADS  Google Scholar 

  8. I. De Moortel, A. W. Hood, J. Ireland, and R. W. Walsh, “Longitudinal intensity oscillations in coronal loops observed with trace. II. Discussion of measured parameters,” Sol. Phys. 209, 89–108 (2002).

    Article  ADS  Google Scholar 

  9. I. De Moortel, J. Ireland, and R. W. Walsh, “Observation of oscillations in coronal loops,” Astron. Astrophys. 355, L23–L26 (2000).

    ADS  Google Scholar 

  10. I. De Moortel and V. M. Nakariakov, “Magnetohydrodynamic waves and coronal seismology: An overview of recent results,” Philos. Trans. R. Soc. London A 370, 3193–3216 (2012).

    ADS  Google Scholar 

  11. B. De Pontieu and S. W. McIntosh, “Quasi-periodic propagating signals in the solar corona: The signature of magneto-acoustic waves or high-velocity upflows,” Astrophys. J. 722, 1013–1029 (2010).

    Article  ADS  Google Scholar 

  12. B. De Pontieu, S. W. McIntosh, V. H. Hansteen, and C. J. Schrijver, “Observing the roots of solar coronal heating in the chromosphere,” Astrophys. J. 701, L1–L6 (2009).

    Article  ADS  Google Scholar 

  13. E. Devlen, D. Zengin Çamurdan, M. Yardımçı, and E. R. Pekünlü, “A new model for heating of the solar North Polar Coronal Hole,” Mon. Not. R. Astron. Soc. 467, 133–144 (2017).

    Article  ADS  Google Scholar 

  14. N. Kitagawa, T. Yokoyama, S. Imada, and H. Hara, “Mode identification of MHD waves in an active region observed with Hinode/Eis,” Astrophys. J. 721, 744–749 (2010).

    Article  ADS  Google Scholar 

  15. O. Kjeldseth-Moe and P. Brekke, “Time variability of active region loops observed with the coronal diagnostic spectrometer (CDS) on SOHO,” Sol. Phys. 182, 73–95 (1998).

    Article  ADS  Google Scholar 

  16. S. Krishna Prasad, D. Banerjee, T. van Doorsselaere, and J. Singh, “Omnipresent long-period intensity oscillations in open coronal structures,” Astron. Astrophys. 546, A50 (2012).

    Article  ADS  Google Scholar 

  17. S. G. Mamedov, Z. F. Shabanova, et al., “About heating of the solar corona,” Azerb. Astron. J., No. 14, 62 (2014).

  18. J. T. Mariska and K. Muglach, “Doppler-shift, intensity, and density oscillations observed with the extreme ultraviolet imaging spectrometer on Hinode,” Astrophys. J. 713, 573–583 (2010).

    Article  ADS  Google Scholar 

  19. V. J. T. Mariska, H. P. Warren, D. R. Williams, and T. Watanabe, “Observations of Doppler shift oscillations with the EUV imaging spectrometer on Hinode,” Astrophys. J. 681, L41–L44 (2008).

    Article  ADS  Google Scholar 

  20. M. P. McEwan and I. De Moortel, “Longitudinal intensity oscillations observed with TRACE: Evidence of fine-scale structure,” Astron. Astrophys. 448, 763–773 (2006).

    Article  ADS  Google Scholar 

  21. S. W. McIntosh and B. De Pontieu, “High-speed transition region and coronal upflows in the Quiet Sun,” Astrophys. J. 707, 524–538 (2009).

    Article  ADS  Google Scholar 

  22. V. M. Nakariakov and E. Verwichte, “Coronal waves and oscillations,” Living Rev. Sol. Phys. 2, 3 (2005).

    Article  ADS  Google Scholar 

  23. L. Ofman, V. M. Nakariakov, and C. E. Deforest, “Slow magnetosonic waves in coronal plumes,” Astrophys. J. 514, 441–447 (1999).

    Article  ADS  Google Scholar 

  24. L. Ofman and T. Wang, “Hot coronal loop oscillations observed by SUMER: Slow magnetosonic wave damping by thermal conduction,” Astrophys. J. 580, L85–L88 (2002).

    Article  ADS  Google Scholar 

  25. E. O’Shea, D. Banerjee, and J. G. Doyle, “A statistical study of wave propagation in coronal holes,” Astron. Astrophys. 463, 713–725 (2007).

    Article  ADS  Google Scholar 

  26. L. J. Porter, J. A. Klimchuk, and P. A. Sturrock, “The role of MHD waves in heating of the solar corona,” Astrophys. J. 435, 482–501 (1994).

    Article  ADS  Google Scholar 

  27. T. Sakurai, K. Ichimoto, K. P. Raju, and J. Singh, “Spectroscopic observation of coronal waves,” Sol. Phys. 209, 265–286 (2002).

    Article  ADS  Google Scholar 

  28. J. Threlfall, I. DeMoortel, S. W. McIntosh, and C. Bethge, “First comparison of wave observations from CoMP and AIA/SDO,” Astron. Astrophys. 556, A124 (2013).

    Article  Google Scholar 

  29. E. Verwichte, M. Marsh, C. Foullon, T. Van Doorsselaere, I. De Moortel, A. W. Hood, and A. M. Nakariakov, “Periodic spectral line asymmetries in solar coronal structures from slow magnetoacoustic waves,” Astrophys. J., Lett. 724, L194–L198 (2010).

    Article  ADS  Google Scholar 

  30. T. J. Wang, L. Ofman, J. M. Davila, and J. T. Mariska, “Hinode/EIS observations of propagating low-frequency slow magnetoacoustic waves in fan-like coronal loops,” Astron. Astrophys. 503, L25–L28 (2009).

    Article  ADS  Google Scholar 

  31. T. J. Wang, S. K. Solanki, W. Curdt, D. E. Innes, and L. E. Dammasch, Oscillating hot loops observed by SUMER, in Proc. SOHO 11 Symp. on From Solar Min to Max: Half a Solar Cycle with SOHO, Davos, Switzerland, Mar. 11–15, 2002 (European Space Agency, Noordwijk, 2002), paper id. ESASP.508.465W.

  32. T. J. Wang, S. K. Solanki, D. E. Innes, W. Curdt, and E. Marsch, “Slow-mode standing waves observed by SUMER in hot coronal loops,” Astron. Astrophys. 402, L17–L20 (2003).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Mamedov.

Additional information

Translated by E. Petrova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mamedov, S.G., Aliyeva, Z.F. & Alisheva, K.I. The Fe IX Line at 17.1 nm in the Radiation Spectrum of Slow Magneto-Acoustic Waves Propagating in the Solar Corona. Kinemat. Phys. Celest. Bodies 37, 300–309 (2021). https://doi.org/10.3103/S0884591321060064

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0884591321060064

Keywords:

Navigation