Skip to main content
Log in

Statistical Analysis of the Orbital Motion of Selected Artificial Earth Satellites during Solar Cycle 24

  • SPACE GEODESY AND GEODYNAMICS
  • Published:
Kinematics and Physics of Celestial Bodies Aims and scope Submit manuscript

Abstract—

A statistical analysis of selected parameters of solar activity and orbital motion of artificial Earth satellites (AES’s) during solar cycle 24 is carried out. Inactive satellites, launch vehicle (LV) stages, and their debris moving mainly in low orbits are studied. Different analysis algorithms are applied to the time series of the solar radio flux F10.7 and the calculated deceleration rate dP/dt of the investigated space objects (SOs): their annual statistical indices are estimated, these parameters are studied for periodicity (wavelet analysis), and a test additive decomposition into trend and seasonal components is performed. It is found that the satellite deceleration rate in the vicinity of the solar maximum (2012–2014) increases by a factor of ten. For the solar radio flux F10.7 and the kinematic parameter dP/dt of SOs 06073 and 31117, seasonal changes, cyclicity with a period of 27 days, etc. are confirmed. A clear anticorrelation between the trends of the corresponding parameters within –0.73…‒0.95 for SO 31117 during 2011–2018 and –0.82…–0.95 for SO 37794 during 2012–2018 is observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. State Space Agency of Ukraine. https://www.nkau.gov.ua. Accessed May 7, 2021.

  2. V. P. Epishev, I. I. Isak, V. I. Kudak, I. I. Motrunich, I. F. Noibauer, N. I. Koshkin, A. I. Belinskii, K. P. Martyniuk-Lototskij, Ya. T. Blagodyr, V. V. Lopachenko, V. V. Rykhalskij, S. V. Ryschenko, and A. V. Zhukovetskij, “Some results of studies of the behaviour of a satellite in orbit in contingency mode under the near-Earth space influence,” Kosm. Nauka Tekhnol. 18 (1), 60–67 (2012). https://doi.org/10.15407/knit2012.01.060

    Article  Google Scholar 

  3. A. S. Parnowski, Yu. I. Yermolayev, and I. T. Zhuk, “Some results of studies of the behaviour of a satellite in orbit in contingency mode under the near-Earth space influence,” Kosm. Nauka Tekhnol. 16 (1), 90–99 (2010). https://doi.org/10.15407/knit2010.01.090

    Article  Google Scholar 

  4. UMOS — Ukraine Network of Optical Stations for Near-Earth Space Research: Catalogue. http://mao.uran. ua/umos/index.php?slab=slabid-12. Accessed June 5, 2021.

  5. L. S. Shakun and N. I. Koshkin, “Cluster analysis of database of orbit parameters of artificial satellites,” Odess. Astron. Publ. 24, 147–152 (2011).

    ADS  Google Scholar 

  6. A. V. Shulga, S. G. Kravchuk, Y. S. Sybiryakova, A. I. Bilinsky, Ya. T. Blagodyr, E. B. Vovchyk, V. P. Epishev, I. V. Kara, Y. S. Kozyryev, N. I. Koshkin, V. I. Kudak, N. A. Kulichenko, I. V. Lubich, A. E. Mazhaev, K. P. Martynyuk-Lototsky, Ya. O. Romanyuk, S. S. Terpan, and L. S. Shakun, “Development of Ukrainian network of optical stations UMOS as component of control systems for near-Earth space,” Kosm. Nauka Tekhnol. 21 (3), 74–82 (2015). https://doi.org/10.15407/knit2015.03.074

    Article  Google Scholar 

  7. Archive of the Daily Solar Data (2021), Prepared by the U.S. Dept. of Commerce, NOAA, Space Weather Prediction Center. ftp://ftp.swpc.noaa.gov/pub/warehouse. Accessed Mar. 1, 2021.

  8. P. Cannon, M. Angling, L. Barclay, Ch. Curry, C. Dyer, R. Edwards, G. Greene, M. Hapgood, R. B. Horne, D. Jackson, C. N. Mitchell, J. Owen, A. Richards, Ch. Rodgers, K. Ryden, S. Saunders, M. Sweeting, R. Tanner, A. Thomson, and C. Underwood, Extreme Space Weather: Impacts on Engineered Systems and Infrastructure (Royal Academy of Engineering, London, 2013). https://www.raeng.org.uk/publications/reports/space-weather-full-report.

    Google Scholar 

  9. R. B. Cleveland, W. S. Cleveland, J. E. McRae, and I. Terpenning, “STL: A seasonal-trend decomposition procedure based on Loess,” J. Off. Stat. 6 (1), 3–73 (1990).

    Google Scholar 

  10. E. D. Feigelson and G. J. Babu, Modern Statistical Methods for Astronomy: With R Applications (Cambridge Univ. Press, Cambridge, 2012).

    Book  Google Scholar 

  11. J. Feynman and S. B. Gabriel, “On space weather consequences and predictions,” J. Geophys. Res.: Space Phys. 105, 10543–10564 (2000). https://doi.org/10.1029/1999JA000141

    Article  ADS  Google Scholar 

  12. R. J. Hyndman and G. Athanasopoulos, Forecasting: Principles and Practice, 3rd ed. (OTexts, Melbourne, 2021). https://OTexts.com/fpp3. Accessed Apr. 23, 2021.

  13. N. Iucci, A. E. Levitin, A. V. Belov, E. A. Eroshenko, N. G. Ptitsyna, G. Villoresi, G. V. Chizhenkov, L. I. Dorman, L. I. Gromova, M. Parisi, M. I. Tyasto, and V. G. Yanke, “Space weather conditions and spacecraft anomalies in different orbits,” Space Weather 3, S01001 (2005). https://doi.org/10.1029/2003SW000056

    Article  ADS  Google Scholar 

  14. N. Koshkin, L. Korniychuk, E. Korobeynikova, M. Ryabov, and K. Sukhov, “The features of change of the drag perturbations of artificial satellite orbits during extreme developments of solar activity in years 2003–2004,” Sun Geosphere 1 (2), 46–49 (2006).

    Google Scholar 

  15. M. M. Koval’chuk, M. B. Hirnyak, O. A. Baran, M. I. Stodilka, Ye. B. Vovchyk, A. I. Bilinsky, Ya. T. Blahodyr, N. V. Virun, and S. V. Apunevych, “Investigation of heliogeoactivity impact on the dynamics of orbital parameters of Earth’s artificial satellites. I,” Kinematics Phys. Celestial Bodies 33, 245–249 (2017). https://doi.org/10.3103/S0884591317050038

    Article  ADS  Google Scholar 

  16. M. M. Koval’chuk, O. A. Baran, M. I. Stodilka, Ye. B. Vovchyk, A. I. Bilinsky, Ya. T. Blahodyr, and N. V. Virun, “Orbital data of the artificial satellites of the Earth,” in Astronomy and Beyond: Astrophysics, Cosmology, Cosmomicrophysics, Astroparticle Physics, Radioastronomy and Astrobiology: Proc. 17th Odessa Int. Astronomical Gamow Conf.-School, Odessa, Ukraine, Aug. 13–20, 2017 (2017), p. 33.

  17. C. Lathuillère, M. Menvielle, J. Lilensten, T. Amari, and S. M. Radicella, “From the Sun’s atmosphere to the Earth’s atmosphere: An overview of scientific models available for space weather developments,” Ann. Geophys. 20, 1081–1104 (2002).

    Article  ADS  Google Scholar 

  18. M. Lockwood, S. Bentley, M. J. Owens, L. A. Barnard, C. J. Scott, C. E. Watt, and O. Allanson, “The development of a space climatology: 3. Models of the evolution of distributions of space weather variables with timescale,” Space Weather 16, 180–209 (2018). https://doi.org/10.1029/2018SW002017

    Article  Google Scholar 

  19. Orbital Debris Q. News N. A. S. A. 24, 2 (2020). https://orbitaldebris.jsc.nasa.gov/. Accessed Apr. 23, 2021.

  20. L. Qian and S. C. Solomon, “Thermospheric density: An overview of temporal and spatial variations,” Space Sci. Rev. 168, 147–173 (2012). https://doi.org/10.1007/s11214-011-9810-z

    Article  ADS  Google Scholar 

  21. Satellites’ Orbital Data (in TLE) by USSPACECOM (2021). https://www.space-track.org. Accessed Mar. 1, 2021.

  22. D. A. Vallado, P. Crawford, and T. S. Kelso, “Revisiting Spacetrack Report #3,” in Proc. AIAA/AAS Astrodynamics Specialist Conf., Keystone, CO, Aug. 21–24, 2006 (AIAA, 2012), paper id. AIAA 2006-6753. http://www. celestrak.com/publications/. Accessed Apr. 30, 2021.

  23. L. Weng, J. Lei, E. Doornbos, H. Fang, and X. Dou, “Seasonal variations of thermospheric mass density at dawn/dusk from GOCE observations,” Ann. Geophys. 36, 489–496 (2018). https://doi.org/10.5194/angeo-36-489-2018

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank S. Apunevych, Senior Researcher at the Astronomical Observatory of Lviv University for participation in the discussion and valuable advice on methods of the time series analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. I. Bilinsky, O. A. Baran, Ye. B. Vovchyk or M. M. Koval’chuk.

Additional information

Translated by O. Pismenov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bilinsky, A.I., Baran, O.A., Stodilka, M.I. et al. Statistical Analysis of the Orbital Motion of Selected Artificial Earth Satellites during Solar Cycle 24. Kinemat. Phys. Celest. Bodies 37, 310–325 (2021). https://doi.org/10.3103/S0884591321060027

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0884591321060027

Keywords:

Navigation