Skip to main content
Log in

Studies of magnetic fields in the solar photosphere using the line-ratio method

  • Solar Physics
  • Published:
Kinematics and Physics of Celestial Bodies Aims and scope Submit manuscript

Abstract

The longitudinal magnetic field measured using the Fe I λ 525 and Fe I λ 524.7 nm lines and global magnetic field of the sun differ depending on the observatory. To study the cause of these discrepancies, we calculate the H (525)/H (524.7) ratios for various combinations of magnetic elements and compare them with the corresponding observed values. We use the standard quiet model of the solar photosphere suggesting that there are magnetic fields of different polarities in the range between zero and several kilogauss. The magnetic element distribution is found as a function of magnetic field strength and the parameters of this distribution are determined for which the calculated H (525)/H (524.7) ratio agrees with the observed one. The sigma-components are found to be shifted differently for various points of the Fe I λ 525 nm profile calculated for the inhomogeneous magnetic field. The farther the point is from the line center, the larger the sigma-components shift. Such a peculiarity of the profiles may be responsible for the discrepancies in the measured values of the global magnetic field obtained at different observatories. The increase in modulus of the global magnetic field during the maxima of solar activity can be due to a larger fraction of magnetic elements with kilogauss magnetic fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. A. Baranovskii and T. T. Tsap, “Thin Structure of Solar Magnetic Fields,” Izv. Krym. Astrofiz. Observ. 106, 75–81 (2010).

    Google Scholar 

  2. V. A. Kotov, “On One Paradoox of Magnetic Solar Field Measurements,” Izv. Krym. Astrofiz. Observatorii 104(1), 109–130 (2008).

    ADS  Google Scholar 

  3. V. A. Kotov and T. T. Tsap, “On Measuremet Quality of General Magnetic Field of the Sun: Facts, Problems, Hypothesis,” Izv. Krym. Astrofiz. Observ. 101, 82–97 (2005).

    Google Scholar 

  4. D. N. Rachkovskii and T. T. Tsap, “Study of Magnetic Fields by Method of Relationship of Measured Tensions in Lines beyond Active Regions on the Sun,” Izv. Krym. Astrofiz. Observ. 71, 79–87 (1985).

    ADS  Google Scholar 

  5. D. N. Rachkovskii, T. T. Tsap, V. G. Lozitskii, and U. M. Leiko, “Diagnosis Problems of Small-Scale Magnetic Fields on the Sun,” Izv. Krym. Astrofiz. Observ. 103(4), 26–35 (2007).

    Google Scholar 

  6. A. B. Severnyi, “On the Nature of Magnetic Fields on the Sun (Thin Field Structure),” Sov. Astron. 9, 171 (1965).

    ADS  Google Scholar 

  7. A. B. Severnyi, “Magnetic Field on Different Depths in Solar Atmosphere,” Sov. Astron. 10, 367 (1966).

    ADS  Google Scholar 

  8. A. B. Severnyi, “Calibration of Magnetic Field Signals of Solar Magnetograph,” Izv. Krym. Astrofiz. Observ. 36, 22–50 (1967).

    Google Scholar 

  9. A. J. de Wijn, J. O. Stenflo, S. K. Solanki, and S. Tsuneta, “Small Scale Solar Magnetic Fields,” Space Sci. Rev. 144, 275–315 (2009).

    Article  ADS  Google Scholar 

  10. O. Gingerich, R. W. Hoyes, W. Kalkofen, and Y. Cuny, “The Harvard Smithsonian Reference Atmosphere,” Solar Phys. 18, 347–365 (1971).

    Article  ADS  Google Scholar 

  11. J. Harvey, “Solar Magnetic Fields—Small Scale,” Publ. Astron. Soc. Pacif. 83, 539–549 (1971).

    Article  ADS  Google Scholar 

  12. J. Harvey and W. Livingsto, “Magnetograph Measurements with Temperature Sensitive Lines,” Solar Phys. 10, 283–293 (1969).

    Article  ADS  Google Scholar 

  13. H. Lin, “On the Distribution of the Solar Magnetic Fields,” Astrophys. J. 446, 421–430 (1995).

    Article  ADS  Google Scholar 

  14. B. W. Lites, “Characterization of Magnetic Flux in the Quiet Sun,” Astrophys. J. 573, 431–444 (2002).

    Article  ADS  Google Scholar 

  15. C. E. Parnell, C. E. Deforest, H. J. Hagenaar, et al., “Quiet Sun: A Comparison of MDI and SDT Fluxes,” Publ. Astron. Soc. Pacif. 397, 31–41 (2008).

    Google Scholar 

  16. B. Ruiz Cobo and Iniesta J. C. del Toro, “Inversion of Stokes Profiles,” Astrophys. J. 398, 375–385 (1992).

    Article  ADS  Google Scholar 

  17. A. B. Severny, “Solar Magnetic Fields,” Space Sci. Rev. 3, 451–486 (1964).

    Article  ADS  Google Scholar 

  18. J. O. Stenflo, “Magnetic Field Structure of the Photospheric Network,” Solar Phys. 32, 41–63 (1973).

    Article  ADS  Google Scholar 

  19. A. Vögler and M. Schüssler, “Studying Magneto-Convection by Numerical Simulation,” Astron. Nachr. 324, 399–404 (2003).

    Article  MATH  Google Scholar 

  20. A. Vögler, S. Shelyag, and M. Schüssler, “Simulations of Magneto-Convection in the Solar Photosphere. Equations, Methods, and Results of the MURaM Code,” Astron. Astrophys. 429, 335–351 (2005).

    Article  ADS  Google Scholar 

  21. E. Wiehr, “A Unique Magnetic Field Range for Nonspot Solar Magnetic Regions,” Astron. Astrophys. 69, 279–284 (1978).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Baranovskii.

Additional information

Original Russian Text © E.A. Baranovskii, T.T. Tsap, 2012, published in Kinematika i Fizika Nebesnykh Tel, 2012, Vol. 28, No. 1, pp. 34–44.

About this article

Cite this article

Baranovskii, E.A., Tsap, T.T. Studies of magnetic fields in the solar photosphere using the line-ratio method. Kinemat. Phys. Celest. Bodies 28, 21–26 (2012). https://doi.org/10.3103/S0884591312010047

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0884591312010047

Keywords

Navigation