Skip to main content
Log in

Relationship of Signal and Noise Characteristics of Autodynes with Frequency Modulation as Function of Distance to Location Object

  • Published:
Radioelectronics and Communications Systems Aims and scope Submit manuscript

Abstract

The paper presents the results of analysis of signal and noise characteristics of autodynes with frequency modulation. The mathematical model of autodyne is presented in the form of a self-oscillator with single-loop oscillation system that is frequency-tuned using the varicap. This model takes into account the impact of intrinsic radiation reflected from location object and the impact of generator internal noises on the oscillator. The paper investigates the relationship of the distortion degree of signal characteristics and the periodic nonstationarity of the root-mean-square value of the level of frequency and amplitude noises as a function of the distance to the location object and the value of external feedback parameter of the autodyne “generator–location object” system. It has been shown that at a small value of the parameter of external feedback, the signal characteristics are quasi-harmonic similar to homodyne type systems, while noises represent a stationary random process. If the value of external feedback parameter is comparable to unity, anharmonic distortions are observed in signal characteristics, while the periodic nonstationarity is observed in noise characteristics. It was established that with an increase of distance to the location object, when the delay time of reflected radiation became comparable or larger than the period of autodyne response, the degree of anharmonic distortions of signal characteristics and the height of peaks of root-mean-square noise level were significantly reduced. The results of experimental investigations have been obtained using the prototype of autodyne sensor with frequency modulation built on the 8-mm band Gunn diode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Notes

  1. These characteristics determine the process of signal formation; therefore, they are generally called signal characteristics of autodynes.

  2. As can be seen from expressions (9) and (11), characteristics an(tn, τn)(s+ns) and un(tn, τn)(s+ns) do not have fundamental differences between themselves, therefore, in what follows we will consider the formation of signal and noise characteristics based only on autodyne changes of frequency and amplitude of generator oscillations.

References

  1. B. M. Armstrong, R. Brown, F. Rix, J. A. C. Stewart, "Use of microstrip impedance- measurement technique in the design of a BARITT diplex Doppler sensor," IEEE Trans. Microw. Theory Tech., v.28, n.12, p.1437 (1980). DOI: https://doi.org/10.1109/TMTT.1980.1130263.

    Article  Google Scholar 

  2. A. Efanov, C. Diskus, A. Stelzer, H. W. Thim, K. Lübke, A. Springer, "Development of a 35 GHz radar sensor," Ann. Des Telecommun., v.52, n.3–4, p.219 (1997). DOI: https://doi.org/10.1007/BF02996047.

    Article  Google Scholar 

  3. D. A. Usanov, A. V. Skripal, A. V. Skripal, A. E. Postelga, "A microwave autodyne meter of vibration parameters," Instruments Exp. Tech., v.47, n.5, p.689 (2004). DOI: https://doi.org/10.1023/B:INET.0000043882.16801.3a.

    Article  Google Scholar 

  4. S. A. Alidoost, R. Sadeghzade, R. Fatemi, "Autodyne system with a single antenna," in Proc. of 11th Int. Radar Symp. (IEEE, 2010). URI: https://ieeexplore.ieee.org/document/5547497.

    Google Scholar 

  5. I. V. Vetrova, A. A. Doroshenko, A. E. Postel’ga, D. A. Usanov, "Remote control of the surface movement of an object using a two-channel SHF autodyne generator," J. Commun. Technol. Electron., v.64, n.4, p.409 (2019). DOI: https://doi.org/10.1134/S1064226919040119.

    Article  Google Scholar 

  6. D. A. Usanov, A. E. Postelga, "Reconstruction of complicated movement of part of the human body using radio wave autodyne signal," Biomed. Eng., v.45, n.1, p.6 (2011). DOI: https://doi.org/10.1007/s10527-011-9198-9.

    Article  Google Scholar 

  7. G. P. Ermak, I. V. Popov, A. S. Vasiliev, A. V. Varavin, V. Y. Noskov, K. A. Ignatkov, "Radar sensors for hump yard and rail crossing applications," Telecommun. Radio Eng., v.71, n.6, p.567 (2012). DOI: https://doi.org/10.1615/TelecomRadEng.v71.i6.80.

    Article  Google Scholar 

  8. S. Kim, B.-H. Kim, J.-G. Yook, G.-H. Yun, "Proximity vital sign sensor using self-oscillating mixer," in 2016 URSI Asia-Pacific Radio Science Conference (URSI AP-RASC) (IEEE, 2016). DOI: https://doi.org/10.1109/URSIAP-RASC.2016.7601402.

    Chapter  Google Scholar 

  9. V. Y. Noskov, K. A. Ignatkov, A. P. Chupakhin, "Application of two-diode autodynes in devices for radiowave control of product dimensions," Meas. Tech., v.59, n.7, p.715 (2016). DOI: https://doi.org/10.1007/s11018-016-1035-9.

    Article  Google Scholar 

  10. F. Mirsaitov, K. A. Ignatkov, "Gas turbine engine in-flight diagnostics using 3D vibration spectra," in 2018 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT) (IEEE, 2018). DOI: https://doi.org/10.1109/USBEREIT.2018.8384603.

    Chapter  Google Scholar 

  11. P. A. Jefford, M. J. Howes, "Modulation schemes in low-cost microwave field sensors," IEEE Trans. Microw. Theory Tech., v.31, n.8, p.613 (1983). DOI: https://doi.org/10.1109/TMTT.1983.1131559.

    Article  Google Scholar 

  12. I. V. Komarov, S. M. Smolskly, Fundamentals of Short-Range FM Radar (Artech House, Norwood, 2004).

    Google Scholar 

  13. S. D. Votoropin, V. Y. Noskov, S. M. Smolskiy, "An analysis of the autodyne effect of oscillators with linear frequency modulation," Russ. Phys. J., v.51, n.6, p.610 (2008). DOI: https://doi.org/10.1007/s11182-008-9083-5.

    Article  MATH  Google Scholar 

  14. A. V. Varavin, A. S. Vasiliev, G. P. Yermak, I. V. Popov, "Autodyne Gunn-diode transceiver with internal signal detection for short-range linear FM radar sensor," Telecommun. Radio Eng., v.69, n.5, p.451 (2010). DOI: https://doi.org/10.1615/TelecomRadEng.v69.i5.80.

    Article  Google Scholar 

  15. Coherent Radar Performance Estimation (Artech House, Norwood, 1993).

    Google Scholar 

  16. V. Y. Noskov, K. A. Ignatkov, A. P. Chupahin, A. V. Vasiliev, G. P. Ermak, S. M. Smolskiy, "Peculiarities of signal formation of the autodyne short-range radar with linear frequency modulation," Visnyk NTUU KPI Seriia - Radiotekhnika Radioaparatobuduvannia, n.67, p.50 (2016). DOI: https://doi.org/10.20535/RADAP.2016.67.50-57.

    Article  Google Scholar 

  17. V. Y. Noskov, K. A. Ignatkov, A. P. Chupahin, A. V. Vasiliev, G. P. Ermak, S. M. Smolskiy, "Signals of autodyne radars with frequency modulation according to symmetric saw-tooth law," Telecommun. Radio Eng., v.75, n.17, p.1551 (2016). DOI: https://doi.org/10.1615/TelecomRadEng.v75.i17.40.

    Article  Google Scholar 

  18. V. Y. Noskov, K. A. Ignatkov, A. P. Chupahin, A. S. Vasilyev, G. P. Ermak, S. M. Smolskiy, "Signals of autodyne sensors with sinusoidal frequency modulation," Radioengineering, v.26, n.4, p.1182 (2017). DOI: https://doi.org/10.13164/re.2017.1182.

    Article  Google Scholar 

  19. V. Y. Noskov, K. A. Ignatkov, A. P. Chupahin, "Moving object signal analysis of autodyne radars with linear types of frequency," Ural Radio Eng. J., v.1, n.1, p.24 (2017). DOI: https://doi.org/10.15826/urej.2017.1.1.002.

    Article  Google Scholar 

  20. V. Y. Noskov, K. A. Ignatkov, A. P. Chupahin, G. P. Ermak, A. S. Vasyliev, "Calculation of autodyne radar noise parameters," in 2016 9th International Kharkiv Symposium on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves (MSMW) (IEEE, 2016). DOI: https://doi.org/10.1109/MSMW.2016.7538099.

    Chapter  Google Scholar 

  21. V. Y. Noskov, A. S. Vasilev, G. P. Ermak, K. A. Ignatkov, A. P. Chupakhin, "Fluctuation characteristics of autodyne radars with frequency modulation," Radioelectron. Commun. Syst., v.60, n.3, p.123 (2017). DOI: https://doi.org/10.3103/S0735272717030049.

    Article  Google Scholar 

  22. V. S. Anishchenko, V. V. Astakhov, T. E. Vadivasova, Regular and Chaotic Self-Oscillations. Synchronization and the Impact of Fluctuations (Intellect, Dolgoprudnyi, 2009).

    Google Scholar 

  23. V. Y. Noskov, K. A. Ignatkov, "About applicability of quasi-statistic method of autodyne systems analysis," Radioelectron. Commun. Syst., v.57, n.3, p.139 (2014). DOI: https://doi.org/10.3103/S0735272714030054.

    Article  Google Scholar 

  24. É. V. Kal’yanov, "Autoparametric delay system with time lag," Tech. Phys., v.52, n.8, p.963 (2007). DOI: https://doi.org/10.1134/S1063784207080014.

    Article  Google Scholar 

  25. V. Y. Noskov, K. A. Ignatkov, "Autodyne signals in case of random delay time of the reflected radiation," Telecommun. Radio Eng., v.72, n.16, p.1521 (2013). DOI: https://doi.org/10.1615/TelecomRadEng.v72.i16.70.

    Article  Google Scholar 

  26. V. Y. Noskov, K. A. Ignatkov, "Peculiarities of noise characteristics of autodynes under strong external feedback," Russ. Phys. J., v.56, n.12, p.1445 (2014). DOI: https://doi.org/10.1007/s11182-014-0198-6.

    Article  Google Scholar 

  27. V. Y. Noskov, K. A. Ignatkov, "Dynamics of autodyne response formation in microwave generators," Radioelectron. Commun. Syst., v.56, n.5, p.227 (2013). DOI: https://doi.org/10.3103/S0735272713050026.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. P. Ermak.

Ethics declarations

ADDITIONAL INFORMATION

V. Ya. Noskov, G. P. Ermak, A. S. Vasiliev, K. A. Ignatkov, K. D. Shaidurov

The authors declare that they have no conflict of interest.

The initial version of this paper in Russian is published in the journal “Izvestiya Vysshikh Uchebnykh Zavedenii. Radioelektronika,” ISSN 2307-6011 (Online), ISSN 0021-3470 (Print) on the link http://radio.kpi.ua/article/view/S0021347021040051 with DOI: https://doi.org/10.20535/S0021347021040051

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii. Radioelektronika, No. 4, pp. 247-260, April, 2021 https://doi.org/10.20535/S0021347021040051 .

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noskov, V.Y., Ermak, G.P., Vasiliev, A.S. et al. Relationship of Signal and Noise Characteristics of Autodynes with Frequency Modulation as Function of Distance to Location Object. Radioelectron.Commun.Syst. 64, 216–227 (2021). https://doi.org/10.3103/S0735272721040051

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0735272721040051

Navigation