Skip to main content
Log in

Channel shortening equalizer for multi-access TH-UWB in the presence of multipath and multiuser interference

  • Published:
Radioelectronics and Communications Systems Aims and scope Submit manuscript

Abstract

In this paper a novel channel shortening equalizer (CSE) for time hopping ultra wideband (TH-UWB) multiple access system with pulse position modulation (PPM) is presented. As UWB channels have very long impulse responses as compared to the narrow pulse width, CSE can reduce the number of correlators. In UWB systems, due to the received pulse that is very similar to the channel impulse response (CIR), the proposed algorithm maximizes the shortening signal to inter-symbol and multiuser interferences ratio (SSINR), defined as the ratio of the received signal energy inside the desired window to the energy in the wall and multiuser interference. The existence of the proposed CSE before correlation receiver decreases the complexity of the receiver architecture by significantly reducing the number of effective channel taps. Further we extend our method to derive general expression for the bit error rate (BER) performance in the presence of inter-symbol and multiuser interferences. Computer simulation results are provided to compare the performance of the proposed method with a MSSNR CSE, lower bound, also known as All-Rake, Partial-Rake, and Selective-Rake in terms of Rake operational temporal windows and BER.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Yang, G. B. Giannakis, “Ultra wide band communication: An idea whose time has come,” IEEE Signal Proc. Mag. 21, No. 6, 26 (2004). DOI: 10.1109/MSP.2004.1359140.

    Article  Google Scholar 

  2. R. Hazra, A. Tyagi, “Cooperative impulse radio ultra-wideband communication using coherent and non-coherent detectors: A review,” Wireless Pers. Commun. 77, No. 1, 719 (2014). DOI: 10.1007/s11277-013-1533-x.

    Article  Google Scholar 

  3. F. F. Dubrovka, V. O. Tretiakov, “Spectral efficiency analysis of digital signals for 3.1-10.6 GHz ultra-wide-band radio systems,” Radioelectron. Commun. Syst. 54, No. 9, 465 (2011). DOI: 10.3103/S0735272711090019.

    Article  Google Scholar 

  4. M. Z. Win, R. A. Scholtz, “Ultra-wide bandwidth time-hopping spread-spectrum impulse radio for wireless multiple-access communications,” IEEE Trans. Commun. 48, No. 4, 679 (2000). DOI: 10.1109/26.843135.

    Article  Google Scholar 

  5. L. Fang, H. Zailu, “Low complexity multi-user detectors of TH-PPM UWB system,” Proc. of Int. Conf. on Wireless Commun., Netw. and Mob. Comp., 26 Sept. 2005, Wuhan, China (IEEE, 2005), pp. 320–323. DOI: 10.1109/WCNM.2005.1544041.

    Google Scholar 

  6. L. Zhang; C. Yang, “Performance analysis of channel shortening of RAKE receiver in ultra-wideband systems,” Proc. of 64th Veh. Tech. Conf., VTC, 25-28 Sept. 2006, Montreal, Que., Canada (IEEE, 2006), pp. 1–5. DOI: 10.1109/VTCF.2006.166.

    Google Scholar 

  7. L. Zhang; C. Yang, “The equalization performance of RAKE receiver inUWBsystem,” Proc. of 7th Int. Conf. on Sig. Process., ICSP, 31 Aug.-4 Sept. 2004, Beijing, China (IEEE, 2004), pp. 1723–1726. DOI: 10.1109/ICOSP.2004.1441667.

    Google Scholar 

  8. S. I. Husain, J. Yuan, J. Zhang, “Rake performance after channel shortening by decay factor optimization inUWB channels,” Proc. Of 66th IEEE Veh. Tech. Conf., VTC, 30 Sept.-3 Oct. 2007, Baltimore, USA (IEEE, 2007), pp. 1204–1207. DOI: 10.1109/VETECF.2007.259.

    Google Scholar 

  9. D. Cassioli, M. Z. Win, F. Vatalaro, A. F. Molisch, “Performance of low-complexity RAKE reception in a realistic UWB channel,” Proc. of IEEE Int. Conf. on Commun., ICC, 28 Apr.-2 May 2002, New York, USA (IEEE, 2002), pp. 763–767. DOI: 10.1109/ICC.2002.996958.

    Google Scholar 

  10. R. K. Martin, K. Vanbleu, M. Ding, G. Ysebaert, M. Milosevic, B. L. Evans, M. Moonen, C. R. Johnson. “Unification and evaluation of equalization structures and design algorithms for discrete multitone modulation systems,” IEEE Trans. Signal Process. 53, No. 10, 3880 (2005). DOI: 10.1109/TSP.2005.855432.

    Article  MathSciNet  Google Scholar 

  11. P. J. W. Melsa, R. C. Younce, C. E. Rohrs, “Impulse response shortening for discrete multitone transceivers,” IEEE Trans. Commun. 44, No. 12, 1662 (1996). DOI: 10.1109/26.545896.

    Article  Google Scholar 

  12. K. Ragoubi, M. Hélard, M. Crussière, “Low complexity channel shortening technique applied to MB-OFDM UWB systems,” Proc. of 4th Int. Conf. on Signal Process. and Commun. Systems, ICSPCS, 13-15 Dec. 2010, Gold Coast, QLD, Australia (IEEE, 2010), pp. 1–6. DOI: 10.1109/ICSPCS.2010.5709684.

    Google Scholar 

  13. A. Chopra, B. L. Evans, “Design of sparse filters for channel shortening,” Proc. of Int. Conf. on Acoustics Speech and Signal Process., ICASSP, 14-19 Mar. 2010, Dallas, TX, USA (IEEE, 2010). DOI: 10.1109/ICASSP.2010.5495507.

    Google Scholar 

  14. M. Avinash, K. V. S. Hari, “Low complexity adaptation for SISO channel shortening equalizers,” AEU—Int. J. Electron. Commun. 66, No. 8, 600 (2012). DOI: 10.1016/j.aeue.2012.03.011.

    Google Scholar 

  15. Boubakeur Berriah, Merahi Bouziani, S. A. Elahmar, “New blind, adaptive channel shortening TEQ for multicarrier modulation systems,” IET Commun. 8, No. 2, 210 (2014). DOI: 10.1049/iet-com.2013.0147.

    Article  Google Scholar 

  16. W. R. Wu, C. F. Lee, Y. F. Chen, “Time-domain equalisation for discrete multi-tone transceivers: new results and performance analysis,” IET Commun. 3, No. 7, 1186 (2009). DOI: 10.1049/iet-com.2008.0133.

    Article  Google Scholar 

  17. S. I. Husain, J. Choi, “Single correlator based UWB receiver implementation through channel shortening equalizer,” Proc. of Asia-Pacific Conf. on Commun., 5 Oct. 2005, Perth, WA, Australia (IEEE, 2005), pp. 610–614. DOI: 10.1109/APCC.2005.1554134.

    Google Scholar 

  18. S. I. Husain, J. Choi, “Blind adaptive channel shortening by unconstrained optimization for simplified UWB receiver design,” Proc. of 3rd Int. Symp. on Wireless Commun. Systems, ISWCS, 6-8 Sept. 2006, Valencia, Spain (IEEE, 2006), pp. 443–446. DOI: 10.1109/ISWCS.2006.4362336.

    Google Scholar 

  19. S. I. Husain, J. Yuan, J. Zhang, “Modified channel shortening receiver based on MSSNR algorithm for UWB channels,” Electron. Lett. 43, No. 9, 535 (2007). DOI: 10.1049/el:20070584.

    Article  Google Scholar 

  20. S. I. Husain, J. Yuan, J. Zhang, R. K. Martin, “Time domain equalizer design using bit error rate minimization for UWB systems,” EURASIP J. Wireless Commun. Networking, 2009, Article ID 786291, 11 pages (2009). DOI: 10.1155/2009/786291.

    Google Scholar 

  21. J. R. Foerster, et al., “Channel modelling sub-committee report final,” Tech. Rep. IEEE P802.15-02/490r1 SG3a, Working Group for Wireless Personal Area Networks, Monterey, Calif, USA (Feb. 2003).

    Google Scholar 

  22. D. Feng, S. Ghauri, Q. Zhu, “Application of the MUI model based on packets collision (PC) in UWB ad-hoc network,” Proc. of Int. Conf. on Networking, Sensing and Control, 26-29 Mar. 2009, Okayama, Japan (IEEE, 2009). DOI: 10.1109/ICNSC.2009.4919337.

    Google Scholar 

  23. G. Durisi, S. A. Benedetto, “Performance evaluation of TH-PPM UWB systems in the presence of multiuser interference,” IEEE Commun. Lett. 7, No. 5, 224 (2003). DOI: 10.1109/LCOMM.2003.812171.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noureddine B. Benotmane.

Additional information

Original Russian Text © N.B. Benotmane, S. Elahmar, 2017, published in Izvestiya Vysshikh Uchebnykh Zavedenii, Radioelektronika, 2017, Vol. 60, No. 8, pp. 438–450.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benotmane, N.B., Elahmar, S. Channel shortening equalizer for multi-access TH-UWB in the presence of multipath and multiuser interference. Radioelectron.Commun.Syst. 60, 339–349 (2017). https://doi.org/10.3103/S0735272717080027

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0735272717080027

Navigation