Skip to main content
Log in

Spectral efficient pulse shape design for UWB communication with reduced ringing effect and performance evaluation for IEEE 802.15.4a channel

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Ultra-Wideband (UWB) faces some regulations due to the interference issues with the co-existing narrowband communication systems, due to which the effective utilization of bandwidth is not possible that causes lower data rate of transmission. We propose a pulse shaping method which can curtail the interference with the co-existing band of communication and have an ability to depress the ringing oscillation. The modified pulse shape has an ability to control over the transmitted power spectral density and offers improved antenna power resolution. To obtain the specific results, the seventh derivative of Gaussian pulse is used as a basic pulse. This pulse is spectrally modified by windowing with Gaussian window to achieve the desired performance. The analysis is not only limited to spectral management but also inculcate the performance estimation of the resultant pulse in multi-user scenario for indoor multipath channel IEEE 802.15.4a. We have also analysed the modified pulse to prove its ability in the location accuracy improvement for high-end application of UWB communication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Molisch, A. F., Foerster, J. R., & Pendergrass, M. (2003). Channel models for ultrawideband personal area networks. IEEE Wireless Communications, 10(6), 14–21. https://doi.org/10.1109/mwc.2003.1265848.

    Article  Google Scholar 

  2. Ghavami, M., Michael, L. B., & Kohno, R. (2007). Ultra wideband signals and systems in communication engineering. Statewide agricultural land use baseline 2015 (2nd ed., Vol. 1). Chichester: Wiley. https://doi.org/10.1017/cbo9781107415324.004.

    Google Scholar 

  3. Miller, L. E. (2003). Why UWB? A review of ultrawideband technology. Report to NETEX Project Office, DARPA by Wireless Communication Technologies Group National Institute of Standards and Technology. Gaithersburg, Maryland. Retrieved from http://www.antd.nist.gov/wctg/manet/NIST_UWB_Report_April03.pdf%5Cnpapers3://publication/uuid/0AF11ADA-3A38-499F-A638-D4468CDE497B. Accessed 27 Aug 2017.

  4. Oppermann, I. (2010). UWB channel models. In I. Oppermann, M. H. Inen, J. Iinatti (Eds.), UWB theory and application (pp. 9–38). Chichester: Wiley.

  5. Naqvi, I., Khaleghi, A., & El Zein, G. (2010). Time reversal UWB communication system: A novel modulation scheme with experimental validation. EURASIP Journal on Wireless Communications and Networking, 2010(1), 398401. https://doi.org/10.1155/2010/398401.

    Article  Google Scholar 

  6. Williams, J. (2001). The IEEE 802.11b security problem. 1. IT Professional, 3(6), 95–96. https://doi.org/10.1109/mitp.2001.977793.

    Article  Google Scholar 

  7. Ohno, K., & Ikegami, T. (2008). Interference mitigation technique for coexistence of pulse-based UWB and OFDM. Eurasip Journal on Wireless Communications and Networking. https://doi.org/10.1155/2008/285683.

    Google Scholar 

  8. Mo, S. S., & Gelman, A. D. (2004). On the power spectral density of UWB signals in IEEE 802.15.3a. In IEEE wireless communications and networking conference (IEEE Cat. No. 04TH8733). Atlanta, GA, USA: IEEE. https://doi.org/10.1109/wcnc.2004.1311323

  9. Romme, J., & Piazzo, L. (2002). On the power spectral density of time-hopping impulse radio. In IEEE conference on ultra wideband systems and technologies (IEEE Cat. No.02EX580) (pp. 2–5). IEEE. https://doi.org/10.1109/uwbst.2002.1006357

  10. Xia, T., Venkatachalam, A. S., & Huston, D. (2012). A high-performance low-ringing ultrawideband monocycle pulse generator. IEEE Transactions on Instrumentation and Measurement, 61(1), 261–266. https://doi.org/10.1109/tim.2011.2161022.

    Article  Google Scholar 

  11. Mohsenian-Rad, A. H., Mietzner, J., Schober, R., & Wong, V. W. S. (2011). Pre-equalization for pre-rake DS-UWB systems with spectral mask constraints. IEEE Transactions on Communications, 59(3), 780–791. https://doi.org/10.1109/tcomm.2011.122110.090718.

    Article  Google Scholar 

  12. Sheng, H. S. H., Orlik, P., Haimovich, A. M., Cimini, L. J. J., & Zhang, J. Z. J. (2003). On the spectral and power requirements for ultra-wideband transmission. In IEEE international conference on communications 2003. ICC’03 (Vol. 1, pp. 738–742). IEEE. https://doi.org/10.1109/icc.2003.1204271.

  13. Nakache, Y., & Molisch, A. (2003). Spectral shape of UWB signals-influence of modulation format, multiple access scheme and pulse shape. In The 57th IEEE semiannual vehicular technology conference, 2003. VTC 2003-Spring. Jeju, South Korea: IEEE. https://doi.org/10.1109/vetecs.2003.1208843.

  14. Kim, Y., & Joo, Y. (2005). Fifth-derivative gaussian pulse generator for UWB system. IEEE Radio Frequency Integrated Circuits Symposium, 2005, 671–674. https://doi.org/10.1109/rfic.2005.1489903.

    Google Scholar 

  15. Merz, R., Widmer, J., Le Boudec, J. Y., & Radunović, B. (2005). A joint PHY/MAC architecture for low-radiated power TH-UWB wireless ad hoc networks. Wireless Communications and Mobile Computing, 5(5), 567–580. https://doi.org/10.1002/wcm.313.

    Article  Google Scholar 

  16. Krebesz, T., Kolumban, G., Tse, C. K., Lau, F., & Dong, H. (2017). Use of UWB Impulse Radio technology in in-car communications: Power limits and optimization. IEEE Transactions on Vehicular Technology, 66(7), 1. https://doi.org/10.1109/tvt.2017.2647849.

    Article  Google Scholar 

  17. Win, M. Z. (2002). Spectral density of random UWB signals. IEEE Communications Letters, 6(12), 526–528. https://doi.org/10.1109/lcomm.2002.806458.

    Article  Google Scholar 

  18. Carvalho, N. B., Fernandes, R. D., & Matos, J. N. (2015). Low-power ultra-wide band pulse generator based on a PIN diode. IET Microwaves, Antennas Propagation, 9(11), 1230–1232. https://doi.org/10.1049/iet-map.2014.0491.

    Article  Google Scholar 

  19. Na, K., Jang, H., Ma, H., Choi, Y., & Bien, F. (2015). A 200-Mb/s data rate 3.1–4.8 GHz IR-UWB all-digital pulse generator with DB-BPSK modulation. IEEE Transactions on Circuits and Systems II: Express Briefs, 62(12), 1184–1188.

    Article  Google Scholar 

  20. Molisch, A. F., Balakrishnan, K., Cassioli, D., Chong, C., Emami, S., Fort, A., et al. (2006). A comprehensive standardized model for ultrawideband propagation channels. IEEE Transactions on Antennas and Propagation. https://doi.org/10.1109/tap.2006.883983.

    Google Scholar 

  21. El-khamy, R. S., et al. (2013). Performance of the IEEE 802.15.4a UWB system using two pulse shaping techniques in presence of single and double narrowband interferences. International Journal of Wireless and Mobile Networks, 5(3), 35–44.

    Article  Google Scholar 

  22. Röhrig, C., Heß, D., Kirsch, C., & Künemund, F. (2010). Localization of an omnidirectional transport robot using IEEE 802.15.4a ranging and laser range finder. In IEEE/RSJ 2010 international conference on intelligent robots and systems, IROS 2010Conference proceedings. Taipei, Taiwan: IEEE. https://doi.org/10.1109/iros.2010.5651981.

  23. Ye, T., Walsh, M., Haigh, P., Barton, J., Mathewson, A., & Flynn, B. O. (2011). Experimental impulse radio IEEE 802.15.4a UWB based wireless sensor localization technology: Characterization, reliability and ranging (March 2009).

  24. Molisch, A. F., Balakrishnan, K., Cassioli, D., Chong, C., Emami, S., Fort, A. et al. (2004). IEEE 802.15.4a channel model—Final report. IEEE. Retrieved from www.ieee802.org/15/pub/04/15-04-0662-02-004a-channel-model-final-report-r1.pdf. Accessed 26 Aug 2017.

  25. Cui, S., Teh, K. C., Li, K. H., Guan, Y. L., & Law, C. L. (2007). Narrowband interference suppression in transmitted reference UWB systems with inter-pulse interference. In International conference on ultra-wideband (pp. 895–898). Singapore: IEEE. https://doi.org/10.1109/icuwb.2007.4381071.

  26. Sharma, A., & Sharma, S. K. (2018). Pulse shape optimization for physical layer UWB communication and performance evaluation in Saleh–Valenzuela channel IEEE 802.15.3a. AEU—International Journal of Electronics and Communications, 95, 5–15. https://doi.org/10.1016/j.aeue.2018.07.028.

    Article  Google Scholar 

  27. Hassan, H. A., Yassin, I. M., Halim, A. K., Zabidi, A., Majid, Z. A., & Abidin, H. Z. (2009). A novel particle swarm optimization method using clonal selection algorithm. In 5th international colloquium on signal processing its applications CSPA (Vol. 2(20), pp. 432–438). https://doi.org/10.1109/cspa.2009.5069266.

  28. Zhang, G., Dai, Y., Zhang, X., Lv, Y., & Chen, L. (2011). Design and implementation of UWB pulse with multiple narrow-band interferences mitigation. In International conference on consumer electronics, communications and networks (CECNet) (pp. 1154–1157). XianNing, China: IEEE. https://doi.org/10.1109/cecnet.2011.5769041.

  29. Safatly, L., Al-Husseini, M., El-Hajj, A., & Kabalan, K. Y. (2012). Advanced techniques and antenna design for pulse shaping in UWB cognitive radio. International Journal of Antennas and Propagation. https://doi.org/10.1155/2012/390280.

    Google Scholar 

  30. Sudhan Majhi, P. R. (2010). Power spectral analysis of orthogonal pulse-based TH-UWB signals. International Journal of Communications, Network and System Sciences, 3(November), 843–849. https://doi.org/10.1109/vetecs.2010.5493877.

    Article  Google Scholar 

  31. Henrique, S., Barboza, I., Alejandro, J., Palacio, A., Pontes, E., & Kofuji, S. T. (2014). Fifth derivative gaussian pulse generator for UWB breast cancer detection system. In International conference on ultra-wideband (pp. 269–273). Paris, France: IEEE. https://doi.org/10.1109/icuwb.2014.6958991.

  32. Liu, X., Premkumar, A. B., & Madhukumar, A. S. (2008). Pulse shaping functions for UWB systems. IEEE Transactions on Wireless Communications, 7(5), 1512–1516. https://doi.org/10.1109/twc.2008.061060.

    Article  Google Scholar 

  33. El-khamy, R., Shaaban, S., Ghaleb, I., & Kheirallah, H. N. (2013). UWB impulse radio waveform shaping techniques for narrow-band interference rejection. International Journal of Engineering and Innovative Technology (IJEIT), 2(9), 134–140.

    Google Scholar 

  34. Ying, Y., Bai, X., & Lin, F. (2018). A 1-Gb/s 6-10-GHz, filterless, pulsed UWB transmitter with symmetrical waveform analysis and generation. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 26, 1171–1182. https://doi.org/10.1109/tvlsi.2018.2808417.

    Article  Google Scholar 

  35. Sharma, S., Gupta, A., & Bhatia, V. (2018). Compressed sensing based UWB receiver using signal-matched sparse measurement matrix. IEEE Transactions on Vehicular Technology. https://doi.org/10.1109/tvt.2018.2881509.

    Google Scholar 

  36. Khani, H., Azmi, P., & Nie, H. (2012). Performance analysis of high rate weighted-TR UWB system in the presence of inter-block and multiuser interferences. AEU—International Journal of Electronics and Communications, 66(3), 219–227. https://doi.org/10.1016/j.aeue.2011.07.002.

    Article  Google Scholar 

  37. Ekome, S. M., Villegas, M., & Schwoerer, J. (2012). Narrowband interference mitigation in UWB communication with energy detector. In International conference on ultra-wideband (pp. 67–71). IEEE. https://doi.org/10.1109/icuwb.2012.6340470.

  38. Liao, S. H., Ho, M. H., Chen, C. H., Chiu, C. C., & Chung, W. C. (2009). A novel DS-UWB pulses design using genetic algorithm. International Conference on Future Computer and Communication, ICFCC, 2009, 296–300. https://doi.org/10.1109/icfcc.2009.128.

    Google Scholar 

  39. SRI, X. (2010). Adaptive UWB pulse design method for multiple narrowband interference suppression. In Conference on intelligent computing and intelligent systems (pp. 545–548).

  40. Adrian, P. (2010). An optimization of Gaussian UWB pulses. In 10th international conference on development and application systems (Vol. 11, pp. 156–160). Retrieved from http://www.dasconference.ro/cd2010/data/papers/B66.pdf. Accessed 27 Aug 2017.

  41. Franz, S., & Mitra, U. (2007). Quantized UWB transmitted reference systems. IEEE Transactions on Wireless Communication, 6(7), 2540–2550. https://doi.org/10.1109/twc.2007.05898.

    Article  Google Scholar 

  42. Tian, Z., & Giannakis, G. B. (2006). Timings synchronization for UWB impulse radios. In X. S. Shen, M. Guizani, R. C. Qiu, T. Le‐Ngoc (Eds,). Ultra-wideband wireless communications and networks (pp. 53–81). Chichester: Wiley. https://doi.org/10.1002/0470028521.ch4

    Chapter  Google Scholar 

  43. Sablatash, M. (2007). Pulse shaping, modulation and spectrum shaping for UWB wireless communications and the effects on interference for single and multiband transmission of UWB signals. In Canadian conference on electrical and computer engineering (May, pp. 1640–1645). https://doi.org/10.1109/ccece.2006.277792.

  44. Cui, S., Guan, Y. L., Teh, K. C., & Li, A. (2009). Pseudocoherent detection of OOK/PPM signals as zero-delay transmitted-reference signals with bandpass downsampling for UWB communications. IEEE Transactions on Vehicular Technology, 58(8), 4141–4148.

    Article  Google Scholar 

  45. Mahmud, M. Z., Islam, M. T., Misran, N., Almutairi, A. F., & Cho, M. (2018). Ultra-wideband (UWB) antenna sensor based microwave breast imaging: A review. Sensors, 18(9), 1–15. https://doi.org/10.3390/s18092951.

    Article  Google Scholar 

  46. Harrington, R. F. (1960). Effect of antenna size on gain, bandwidth, and efficiency. Journal of the National Bureau of Standards, 64D(1), 1–12. https://doi.org/10.6028/jres.064d.003.

    MATH  Google Scholar 

  47. Federal Communication Commission. (2002). Revision of part 15 of the commission’s rules regarding ultra-wideband transmission systems. First report and order in ET, (FCC02-48), pp. 1–118. https://doi.org/10.1017/cbo9781107415324.004.

  48. Liu, W. C., & Wang, L. C. (2006). BER analysis of the IEEE 802.15.4a channel model with RAKE receiver. In IEEE vehicular technology conference (pp. 943–947). https://doi.org/10.1109/vtcf.2006.201.

  49. Cohen, K. M., Attias, C., Farbman, B., Tselniker, I., & Eldar, Y. C. (2014). Channel estimation in UWB channels using compressed sensing. In IEEE international conference on acoustics, speech and signal processing (ICASSP) (pp. 1985–1989).

  50. Lee, J. Y. (2010). UWB channel modeling in roadway and indoor parking environments. IEEE Transactions on Vehicular Technology, 59(7), 3171–3180. https://doi.org/10.1109/tvt.2010.2044821.

    Article  Google Scholar 

  51. Wu, W. C. (2007). Multiuser detection of time-hopping PPM UWB system in the presence of multipath fading. AEU—International Journal of Electronics and Communications, 61(1), 22–29. https://doi.org/10.1016/j.aeue.2006.02.001.

    Article  Google Scholar 

  52. Franz, S., & Mitra, U. (2006). Generalized UWB transmitted reference systems. IEEE Journal on Selected Areas in Communications, 24, 780–786.

    Article  Google Scholar 

  53. Shen, X. S., Guizani, M., Qiu, R. C., & Le-Ngoc, T. (Eds.). (2006). Ultra-wideband wireless communications and networks. Chichester: Wiley. https://doi.org/10.1002/0470028521.

    Google Scholar 

  54. Patwari, N., Hero, A. O., Perkins, M., Correal, N. S., & O’dea, R. J. (2003). Relative location estimation in wireless sensor networks. IEEE Transactions on Signal Processing. https://doi.org/10.1109/tsp.2003.814469.

    Google Scholar 

  55. Laaraiedh, M., Avrillon, S., & Uguen, B. (2010). A maximum likelihood TOA based estimator for localization in heterogeneous networks. International Journal of Communications, Network and System Sciences, 03(01), 38–42. https://doi.org/10.4236/ijcns.2010.31004.

    Article  Google Scholar 

  56. Catovic, A., & Sahinoglu, Z. (2004). The Cramer-Rao bounds of hybrid TOA/RSS and TDOA/RSS location estimation schemes. IEEE Communications Letters. https://doi.org/10.1109/lcomm.2004.835319.

    Google Scholar 

  57. Arslan, H., & Chen, Z. N. (Eds.). (2006). Ultra wideband wireless communication. New Jersey: Wiley.

    Google Scholar 

  58. Hernández, Á., Badorrey, R., Chóliz, J., Alastruey, I., & Valdovinos, A. (2008). Accurate indoor wireless location with IR UWB systems a performance evaluation of joint receiver structures and TOA based mechanism. IEEE Transactions on Consumer Electronics, 54(2), 381–389. https://doi.org/10.1109/tce.2008.4560103.

    Article  Google Scholar 

  59. Fort, A., Ryckaert, J., Desset, C., Doncker, P. De, Wambacq, P., & Biesen, L. Van. (2006). Ultra-wideband channel model for communication around the human body. IEEE Journal on Selected Areas in Communications, 24(4), 927–933. https://doi.org/10.1109/jsac.2005.863885.

    Article  Google Scholar 

  60. Dokania, R. K., Wang, X. Y., Tallur, S. G., & Apsel, A. B. (2011). A low power impulse radio design for body-area-networks. IEEE Transactions on Circuits and Systems I: Regular Papers, 58(7), 1458–1469. https://doi.org/10.1109/tcsi.2011.2131250.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhishek Sharma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The Eq. (1-b) is representing the seventh order derivative of Gaussian pulse given by

$$y\left( t \right) = A*exp\left( { - \frac{{t^{2} }}{{2 \cdot \sigma_{1}^{2} }}} \right)$$
(34)

where A and t are the normalized amplitude and time respectively.\(\sigma_{1}\) is the standard deviation or PSF. The equation is derived with the help of computational method and verified using MATLAB simulations.

Equation (3) is a basic normalized Gaussian window function used by mathematicians with A = 1 and PSF as \(\sigma_{2}\).

Equations (2) and (4) have been obtained as follows,

$$f\left( t \right) = exp\left\{ { - \frac{{\pi \cdot t^{2} }}{{2 \cdot \sigma_{1}^{2} }}} \right\} = exp\left\{ { - at^{2} } \right\}$$
(35)

Where, \(a = \frac{\pi }{{2 \cdot \sigma_{1}^{2} }}\). Now, after differentiating the above Eq. (8.2) in time domain, we obtain

$$\frac{d}{dt}f\left( t \right) = - 2 \cdot a.t \cdot f\left( t \right)$$
(36)

Now, consider the properties of continuous time Fourier transform, we have

$$j\omega F\left( \omega \right) = - \frac{2a}{j}\frac{d}{d\omega }F\left( \omega \right)$$
(37)

The solution of differential Eq. (8.4) for \(F\left( \omega \right)\) will be

$$F\left( \omega \right) = K \cdot exp\left( { - \frac{{\omega^{2} }}{4a}} \right)$$
(38)

where \(\omega\) is the angular frequency associated with frequency \(\omega = 2\pi f\). The value of K is obtained as under in Eq. (8.6)

$$F\left( 0 \right) = K = \mathop \smallint \limits_{ - \infty }^{\infty } exp\left( { - at^{2} } \right)dt = 2\mathop \smallint \limits_{0}^{\infty } exp\left( { - at^{2} } \right)dt = \frac{2}{\sqrt a }\mathop \smallint \limits_{0}^{\infty } exp\left( { - \rho^{2} } \right)d\rho = \sqrt {\frac{\pi }{a}}$$
(39)

where error function \(\frac{2}{\sqrt \pi }*\mathop \smallint \limits_{0}^{\infty } exp\left( { - \rho^{2} } \right)d\rho = 1\).

Now, the solution and the derivation of Eq. (4), can be expressed as Eq. (8.7)

$$F\left( f \right) = \sqrt 2 \sigma_{1} exp\left( {\left( { - \frac{{\left( {2\pi f} \right)^{2} \sigma_{1}^{2} }}{2\pi }} \right)} \right)$$
(40)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, A., Sharma, S.K. Spectral efficient pulse shape design for UWB communication with reduced ringing effect and performance evaluation for IEEE 802.15.4a channel. Wireless Netw 25, 2723–2740 (2019). https://doi.org/10.1007/s11276-019-01989-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-019-01989-6

Keywords

Navigation