Skip to main content
Log in

Rotation of the polarization plane by double-layer planar-chiral structures. Review of the results of theoretical and experimental studies

  • Published:
Radioelectronics and Communications Systems Aims and scope Submit manuscript

Abstract

This article provides examples that illustrate the search for different two-layer metamaterials that provide rotation of the polarization plane (“optical activity”). Selected objects show a twenty-year history of the search for a new principle of creation of polarization rotators based on planar metamaterials that were implemented in the form of thin-layered periodic structures. The manifestation of optical activity, presence or absence of satisfactory or perfect matching, the possibility of a multiband phenomena, the role of high spatial harmonics in “electromagnetics” of this effect are explained by the features of the eigen-oscillations that are excited in the gap of the multilayer structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, D. R. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas and Propagation Magazine 54, No. 2, 10 (2012), DOI: 10.1109/MAP.2012.6230714.

    Article  Google Scholar 

  2. J. B. Pendry, “A chiral route to negative refraction,” Science 306, No. 5700, 1353 (2004), DOI: 10.1126/science.1104467.

    Article  Google Scholar 

  3. L. R. Arnaut, L. E. Davis, “On planar chiral structures,” Progress in Electromagnetic Research Symposium, PIERS 1995, 24–28 July, Seattle, WA (1995), p. 165.

    Google Scholar 

  4. L. R. Arnaut, “Chirality in multi-dimensional space with application to electromagnetic characterisation of multi-dimensional chiral and semi-chiral media,” Journal of Electromagnetic Waves and Applications 11, No. 11, 1459 (1997), DOI: 10.1163/156939397X00549.

    Article  Google Scholar 

  5. S. L. Prosvirnin, “Analysis of electromagnetic wave scattering by plane periodical array of chiral strip elements,” Proc. of 7th Int. Conf. on Complex Media “Bianisotropics-98”, 3–6 June 1998 (Technische Universitat Braunschweig, Germany, 1998), pp. 185–188. DOI: 10.13140/2.1.1744.1929.

    Google Scholar 

  6. S. L. Prosvirnin, “Transformation of polarization when waves are reflected by a microstrip array made of complex-shaped elements,” Journal of Communications Technology and Electronics 44, No. 6, 635 (1999).

    Google Scholar 

  7. D.-H. Kwon, P. L. Werner, D. H. Werner, “Optical planar chiral metamaterial designs for strong circular dichroism and polarization rotation,” Optics Express 16, No. 16, 11802 (2008), DOI: 10.1364/OE.16.011802.

    Article  Google Scholar 

  8. M. Decker, M. Ruther, C. E. Kriegler, J. Zhou, C. M. Soukoulis, S. Linden, M. Wegener, “Strong optical activity from twisted-cross photonic metamaterials,” Optics Letters 34, No. 16, 2501 (2009), DOI: 10.1364/OL.34.002501.

    Article  Google Scholar 

  9. A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett. 97, 177401 (2006), DOI: 10.1103/PhysRevLett.97.177401.

    Article  Google Scholar 

  10. A. Mackay, “Proof of polarization independence and nonexistence of crosspolar terms for targets presenting n-fold (n >2) rotational symmetry with special reference to frequency-selective surfaces,” Electron. Lett. 25, No. 24, 1624 (1989), DOI: 10.1049/el:19891088.

    Article  Google Scholar 

  11. A. Sonsilphong, P. Gutruf, W. Withayachumnankul, D. Abbott, M. Bhaskaran, S. Sriram, N. Wongkasem, “Flexible bi-layer terahertz chiral metamaterials,” Journal of Optics 17, No. 8, 085101 (2015), DOI: 10.1088/2040-8978/17/8/085101.

    Article  Google Scholar 

  12. E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79, 035407 (2009), DOI: 10.1103/PhysRevB.79.035407.

    Article  Google Scholar 

  13. D. Zarifi, M. Soleimani, V. Nayyeri, “Dual- and multiband chiral metamaterial structures with strong optical activity and negative refraction index,” IEEE Antennas Wireless Propag. Lett. 11, 334 (2012), DOI: 10.1109/LAWP.2012.2191261.

    Article  Google Scholar 

  14. D. Zarifi, M. Soleimani, V. Nayyeri, J. Rashed-Mohassel, “On the miniaturization of semiplanar chiral metamaterial structures,” IEEE Trans. Antennas Propag. 60, No. 12, 5768 (2012), DOI: 10.1109/TAP.2012.2214015.

    Article  MathSciNet  Google Scholar 

  15. D. Zarifi, M. Soleimani, V. Nayyeri, “A novel dual-band chiral metamaterial structure with giant optical activity and negative refractive index,” J. Electromagn. Waves Appl. 26, 251 (2012), DOI: 10.1163/156939312800030767.

    Article  Google Scholar 

  16. R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92, No. 3, 037401 (2004), DOI: 10.1103/PhysRevLett.92.037401.

    Article  Google Scholar 

  17. V. Derkach, A. Kirilenko, A. Salogub, S. Prikolotin, N. Kolmakova, Ye. Ostrizhnyi, “Giant optical activity in artificial planar-chiral sructures,” Proc. of Int. Kharkov Symp. MSMW’13, 23–28 Jun. 2013, Kharkov, Ukraine (IEEE, 2013), pp. 435–438. DOI: 10.1109/MSMW.2013.6622098.

    Google Scholar 

  18. Z. Li, R. Zhao, T. Koschny, M. Kafesaki, Kamil Boratay Alici, E. Colak, H. Caglayan, E. Ozbay, C. M. Soukoulis, “Chiral metamaterials with negative refractive index based on four ‘U’ split ring resonators,” Appl. Phys. Lett. 97, 081901 (2010), DOI: 10.1063/1.3457448.

    Article  Google Scholar 

  19. A. Kirilenko, N. Kolmakova, S. Prikolotin, “Plane-chiral pair with opposite rotatios as a new way to rotate polarization up to 90°,” Proc. of Int. Conf. MMET, 28–30 Aug. 2012, Kharkiv, Ukraine (IEEE, 2012), pp. 80–83. DOI: 10.1109/MMET.2012.6331155.

    Google Scholar 

  20. N. Kolmakova, S. Prikolotin, A. Perov, V. Derkach, A. Kirilenko, “Polarization plane rotation by arbitrary angle using D4 symmetrical structures,” IEEE Trans. Microwave Theory Tech. 64, No. 2, 429 (2016), DOI: 10.1109/TMTT.2015.2509966.

    Google Scholar 

  21. Z. Li, H. Caglayan, E. Colak, J. Zhou, Costas M. Soukoulis, E. Ozbay, “Coupling effect between two adjacent chiral structure layers,” Optics Express 18, No. 6, 5375 (2010), DOI: 10.1364/OE.18.005375.

    Article  Google Scholar 

  22. S. I. Maslovski, D. K. Morits, S. A. Tretyakov, “Symmetry and reciprocity constraints on diffraction by gratings of quasi-planar particles,” J. Opt. A, Pure Appl. Opt. 11, No. 7, 074004 (2009), DOI: 10.1088/1464–4258/11/7/074004.

    Article  Google Scholar 

  23. N. G. Kolmakova, A. A. Kirilenko, S. L. Prosvirin, “Planar chiral irises in a square waveguide and “optical activity” manifestations,” Radio Physics and Radio Astronomy 2, No, 3, 255 (2011), DOI: 10.1615/RadioPhysicsRadioAstronomy.v2.i3.70.

    Article  Google Scholar 

  24. A. Kirilenko, S. Senkevich, B. Tysic, “Regularities of resonance phenomena in open structures of waveguide type,” Radiotekh. Elektron. 35, No. 4, 687 (1990).

    Google Scholar 

  25. J. F. Cornwell, Appendix C: Character tables for the crystallographic point groups. In: Group Theory in Physics: An Introduction (Academic, New York, 1997).

    Google Scholar 

  26. N. Kolmakova, S. Prikolotin, A. Kirilenko, A. Perov, “Simple example of polarization plane rotation by the fringing fields interaction,” Proc. of European Microwave Conf., 6–10 Oct. 2013, Nuremberg (IEEE, 2013), pp. 936–938. URL: http://ieeexplore.ieee.org/document/6686812/.

    Google Scholar 

  27. A. A. Kirilenko, N. G. Kolmakova, S. A. Prikolotin, “Ultra-compact 90° twist based on a pair of two closely placed flat chiral irises,” Radioelectron. Commun. Syst. 55, No. 4, 175 (2012), DOI: 10.3103/S073527271204005X.

    Article  Google Scholar 

  28. A. A. Kirilenko, A. O. Perov, “On the common nature of the enhanced and resonance transmission through the periodical set of holes,” IEEE Trans. Antennas Propag. 56, No. 10, 3210 (2008), DOI: 10.1109/TAP.2008.929437.

    Article  Google Scholar 

  29. N. G. Kolmakova, Andrey O. Perov, S. L. Senkevich, A. A. Kirilenko, “Abnormal propagation of EMW through below cutoff holes and intrinsic oscillations of waveguide objects and periodic structures,” Radioelectron. Commun. Syst. 54, No. 3, 115 (2011), DOI: 10.3103/S0735272711030010.

    Article  Google Scholar 

  30. A. A. Kirilenko, B. G. Tysik, “Connection of S-matrix of waveguide and periodical structures with complex frequency spectrum,” Electromagnetics 13, No. 3, 301 (1993), DOI: 10.1080/02726349308908352.

    Article  Google Scholar 

  31. B. A. Munk, Frequency Selective Surfaces: Theory and Design (Wiley, New York, 2000).

    Book  Google Scholar 

  32. A. O. Perov, A. A. Kirilenko, V. N. Derkach, “Polarization response manipulation for compound circular hole fishnet metamaterial,” IEEE ntennas Wireless Propag. Lett. 16, 117 (April 2016), DOI: 10.1109/LAWP.2016.2559452.

    Article  Google Scholar 

  33. D. Yu. Kulik, L. P. Mospan, A. O. Perov, N. G. Kolmakova, “Compact-size polarization rotators on the basis of irises with rectangular slots,” Telecom. Radio Eng. 75, No. 10, 857 (2016), DOI: 10.1615/TelecomRadEng.v75.i10.10.

    Article  Google Scholar 

  34. D. Yu. Kulik, D. Yu. Steshenko, A. A. Kirilenko, “Compact polarization plane rotators on the given angle in square waveguide,” Radiofiz. Elektron. 22, No. 1, 15 (2017).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. A. Kirilenko or Sergey Prosvirnin.

Additional information

0000-0002-8717-5334

0000-0003-4777-3927

0000-0002-9059-2710

0000-0002-9205-3761

0000-0002-4895-1409

Original Russian Text © A.A. Kirilenko, S.O. Steshenko, V.N. Derkach, S.A. Prikolotin, D.Yu. Kulik, S. Prosvirnin, L.P. Mospan, 2017, published in Izvestiya Vysshikh Uchebnykh Zavedenii, Radioelektronika, 2017, Vol. 60, No. 5, pp. 245–261.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirilenko, A.A., Steshenko, S.O., Derkach, V.N. et al. Rotation of the polarization plane by double-layer planar-chiral structures. Review of the results of theoretical and experimental studies. Radioelectron.Commun.Syst. 60, 193–205 (2017). https://doi.org/10.3103/S0735272717050016

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0735272717050016

Navigation