Skip to main content
Log in

Criss-cross metamaterial-substrate microstrip antenna with enhanced gain and bandwidth

  • Published:
Radioelectronics and Communications Systems Aims and scope Submit manuscript

Abstract

Metamaterials have been an attractive topic for research in the field of electromagnetics in recent years. In this paper, a criss-cross structure has been suggested; this shape has been inspired from the famous Jerusalem Cross. The software analysis of the proposed unit cell structure has been validated experimentally thus giving negative response of ɛ and μ. Following this, a microstrip patch antenna based on suggested metamaterial has been designed. The theory and design formulas to calculate various parameters of the proposed antenna have been presented. The design of a metamaterial based microstrip patch antenna has been optimized for providing of an improved gain, bandwidth and multiple frequency operations. All the antenna performance parameters are compared and presented in table and response-graphs. Also it has been observed that the physical dimensions of the metamaterial based patch antenna are smaller compared to its conventional counterpart operating in the same frequency band. The response of the patch antenna has been verified experimentally either. The important part of the research was to develop metamaterial based on some signature structures and techniques that would offer advantage in terms of bandwidth and multiple frequency operation, that is demonstrated in the paper. The unique shape suggested in this paper provides an improvement in bandwidth without reducing the gain of the antenna.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Richard Q. Lee, K.-F. Lee, “Experimental study of the two-layer electromagnetically coupled rectangular patch antenna,” IEEE Trans. Antennas Propag. 38, No. 8, 1298 (Aug. 1990), DOI: 10.1109/8.56971.

    Article  Google Scholar 

  2. B. Robert, T. Razban, A. Papiernik, “Compact amplifier integration in square patch antenna,” Electron. Lett. 28, No. 19, 1808 (Sept. 1992), DOI: 10.1049/el:19921153.

    Article  Google Scholar 

  3. N. G. Alexopoulos, D. R. Jackson, “Fundamental superstrate (cover) effects on printed circuit antennas,” IEEE Trans. Antennas Propag. 32, No. 8, 807 (Aug. 1984), DOI: 10.1109/TAP.1984.1143433.

    Article  Google Scholar 

  4. T. Huynh, K. F. Lee, “Single-layer single-patch wideband microstrip antenna,” Electron. Lett. 31, No. 16, 1310 (Aug. 1995), DOI: 10.1049/el:19950950.

    Article  Google Scholar 

  5. Vijay Gupta, Sumit Sinha, Shiban K. Koul, Bharathi Bhat, “Wideband dielectric resonator-loaded suspended microstrip patch antennas,” Microw. Opt. Technol. Lett. 37, No. 4, 300 (May 2003), DOI: 10.1002/mop.10900.

    Article  Google Scholar 

  6. Fan Yang, Xue-Xia Zhang, Xiaoning Ye, Y. Rahmat-Samii, “Wide-band E-shaped patch antennas for wireless communications,” IEEE Trans. Antennas and Propag. 49, No. 7, 1094 (Jul. 2001), DOI: 10.1109/8.933489.

    Article  Google Scholar 

  7. H. A. Majid, M. K. Abd Rahim, T. Masri, “Microstrip antenna’s gain enhancement using left-handed metamaterial structures,” PIER M 8, 235 (2009), DOI: 10.2528/PIERM09071301.

    Article  Google Scholar 

  8. K. Buell, H. Mosallaei, K. Sarabandi, “A substrate for small patch antennas providing tunable miniaturization factors,” IEEE Trans. Microwave Theory Tech. 54, No. 1, 135 (Jan. 2006), DOI: 10.1109/TMTT.2005.860329.

    Article  Google Scholar 

  9. Kamil Boratay Alici, Ekmel Ozbay, “Electrically small split ring resonator antennas,” J. Appl. Phys. 101, No. 8, 083104 (2007), DOI: 10.1063/1.2722232.

    Article  Google Scholar 

  10. A. Pirhadi, F. Keshmiri, M. Hakkak, M. Tayarani, “Analysis and design of dual band high directive EBG resonator antenna using square loop FSS as superstrate layer,” PIER 70, 1 (2007), DOI: 10.2528/PIER07010201.

    Article  Google Scholar 

  11. S. N. Burokur, M. Latrach, Serge Toutain, “Theoritical investigation of a circular patch antenna in the presence of a left-handed medium,” IEEE Antennas Wireless Propag. Lett. 4, 183 (2005), DOI: 10.1109/LAWP.2005.850797.

    Article  Google Scholar 

  12. Kirti Inamdar, Y. P. Kosta, S. Patnaik, “A criss-cross metamaterial based electrically small antenna,” Int. J. Eng. Res. Applications 3, No. 3, 004 (May–June 2013), http://www.ijera.com/papers/Vol3-issue3/B33004007.pdf .

    Google Scholar 

  13. R. W. Ziolkowski, “Design, fabrication, and testing of double negative metamaterials,” IEEE Trans. Antennas Propag. 51, No. 7, 1516 (Jul. 2003), DOI: 10.1109/TAP.2003.813622.

    Article  MathSciNet  Google Scholar 

  14. Jiafu Wang, Shaobo Qu, Hua Ma, Song Xia, Yiming Yang, Lei Lu, Xiang Wu, Zhuo Xu, Qian Wang, “Experimental verification of anisotropic three-dimensional left-handed metamaterial composed of Jerusalem Crosses,” PIERS Online 6, No. 1, 31 (2010), DOI: 10.2529/PIERS090825095520.

    Article  Google Scholar 

  15. Alexander Remley Katko, “Artificial negative permeability based on a fractal Jerusalem Cross,” Undergraduate Honors Thesis (The Ohio State University, 2009).

    Google Scholar 

  16. Kirti Inamdar, Y. P. Kosta, S. Patnaik, “A criss-cross shaped left-handed metamaterial,” Eur. J.Sci. Res. 104, No. 2, 261 (Jun. 2013).

    Google Scholar 

  17. D. R. Smith, D. C. Vier, Th. Koschny, C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71, 036617 (2005), DOI: 10.1103/PhysRevE.71.036617.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirti Inamdar.

Additional information

Original Russian Text © K. Inamdar, Y.P. Kosta, S. Patnaik, 2015, published in Izv. Vyssh. Uchebn. Zaved., Radioelektron., 2015, Vol. 58, No. 2, pp. 26–35.

ORCID: 0000-0001-5753-9435

The authors are thankful to the Electrical department of Engineering, IIT Kanpur and SAC ISRO, Ahemdabad for allowing them to use their resources for testing and measurements of their design.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inamdar, K., Kosta, Y.P. & Patnaik, S. Criss-cross metamaterial-substrate microstrip antenna with enhanced gain and bandwidth. Radioelectron.Commun.Syst. 58, 69–74 (2015). https://doi.org/10.3103/S073527271502003X

Download citation

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S073527271502003X

Keywords

Navigation