Skip to main content

Analysis and Design of Microstrip Patch Antenna with Two Different Metamaterial Unit Cells

  • Conference paper
  • First Online:
Flexible Electronics for Electric Vehicles

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 863))

  • 570 Accesses

Abstract

In this paper, we design and fabricate a metamaterial-inspired antenna with size reduction and multiband resonant frequencies. Here, we analyze the metamaterial unit cell with conventional split ring resonator and complementary split ring resonators. We incorporate the MM unit cell with a conventional microstrip patch antenna to get multi-bands. Antenna is resonant on three frequency bands 2.3, 4.5, and 7.4 GHz.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Veselago VG (1968) The electrodynamics of substances with simultaneously negative values of e and μ. Sov Phys Usp 10:509

    Article  Google Scholar 

  2. Pendry JB, Holden AJ, Robbins DJ et al (1999) Magnetism form conductors and enhanced nonlinear phenomena. IEEE Trans Microw Theory Techn 47:2075

    Article  Google Scholar 

  3. Shelby RA, Smith DR, Schultz S (2001) Experimental verification of a negative index of refraction. Science 292:77

    Article  Google Scholar 

  4. Smith DR, Padilla WJ, Vier DC et al (2000) Composite medium with simultaneously negative permeability and permittivity. Phys Rev Lett 84:4184

    Article  Google Scholar 

  5. Smith DR, Vier DC, Koschny T et al (2005) Electromagnetic parameter retrieval from inhomogeneous metamaterials. Phys Rev E 71:036617

    Article  Google Scholar 

  6. Smith DR, Schultz S, Markos P et al (2002) Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients. Phys Rev B 65:195104

    Article  Google Scholar 

  7. Chen X, Grzegorcezyk TM, Wu B et al (2004) Robust method to retrieve the constitutive effective parameters of metamaterials. Phys Rev E 70:016608

    Article  Google Scholar 

  8. Falcone F, Lopetegi T, Laso MAG et al (2004) Babinet principle applied to the design of metasurfaces and metamaterials. Phys Rev Lett 93:197401

    Article  Google Scholar 

  9. Markos P, Soukoulis CM (2003) Transmission properties and effective electromagnetic parameters of double negative metamaterials. Opt Express 11:649

    Article  Google Scholar 

  10. Wu S, Yi Y, Yu Z, Huang X, Yang H (2016) A zero-index metamaterial for gain and directivity enhancement of tapered slot antenna. J Electromagn Waves Appl 30(15):1236510

    Google Scholar 

  11. Dawar P, Raghava NS, De A (2016) High gain, directive and miniaturized metamaterial C-band antenna. Cogent Phys 3(1):714–720

    Google Scholar 

  12. Xiong H, Li D, Yang C, Li XM, Ou X (2016) Miniaturization of monopole antenna by metamaterial loading technique. IETE J Res 62(5):714–720

    Article  Google Scholar 

  13. Awan ZA (2017) Gain characteristics of a metamaterial coated slotted sphere. J Mod Opt 64(8):807–818

    Article  Google Scholar 

  14. Mulla SS, Deshpande SS (2018) Miniaturization of multiband annular slot ring antenna using reactive loading. J Electromagn Waves Appl 32(14):1779–1790

    Google Scholar 

  15. Kumar A, Verma AK (2013) DGS-based Chebyshev low-pass filter for wireless communication. IETE J Res 59(4):433–437

    Google Scholar 

  16. Torabi Y, Bahri A, Sharifi A-R (2016) A novel metamaterial MIMO antenna with improved isolation and compact size based on lSRR resonator. IETE J Res 62(1):106–112

    Article  Google Scholar 

  17. Dadashzadeh G, Torabi Y, Kargar M, Rahmati B (2016) Widescan phased antenna array based on cavity-backed ELC-slot microstrip patch antenna element. IETE J Res 62(5):557–563

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nameeta Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sharma, N., Vyas, K., Srivastava, R. (2023). Analysis and Design of Microstrip Patch Antenna with Two Different Metamaterial Unit Cells. In: Dwivedi, S., Singh, S., Tiwari, M., Shrivastava, A. (eds) Flexible Electronics for Electric Vehicles. Lecture Notes in Electrical Engineering, vol 863. Springer, Singapore. https://doi.org/10.1007/978-981-19-0588-9_57

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-0588-9_57

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-0587-2

  • Online ISBN: 978-981-19-0588-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics