Skip to main content
Log in

Study of the Slow Pyrolysis of Lignin, Hemicellulose, and Cellulose and the Effect of Their Interaction in Plant Biomass

  • Published:
Solid Fuel Chemistry Aims and scope Submit manuscript

Abstract

The pyrolysis of two types of raw materials of plant origin (sawdust and sunflower husks), components of the organic matter of biomass (hemicellulose, cellulose, and lignin), and model mixtures prepared from components in accordance with their fractions in the raw materials was studied. Pyrolysis of the materials was carried out using TGA and a laboratory setup with a fixed bed reactor. The distribution and composition of the products were determined at pyrolysis temperatures of 350, 425, 500, and 575°C. Experimental data obtained with the biomass samples and model mixtures were compared with calculated values obtained based on the pyrolysis of individual components and their fractions in the biomass. The possibility of predicting the distribution of pyrolysis products depending on the component composition was investigated. The influence of intercomponent interaction in biomass on the yield and composition of pyrolysis products was revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Bhattacharjee, N. and Biswas, A.B.J., Environ. Chem. Eng., 2019, vol. 7, no. 1, p. 102903. https://doi.org/10.1016/j.jece.2019.102903

    Article  CAS  Google Scholar 

  2. Diblasi, C., Prog. Energy Combust. Sci., 2008, vol. 34, no. 1, p. 47. https://doi.org/10.1016/j.pecs.2006.12.001

    Article  CAS  Google Scholar 

  3. Wu, Y., Gui, Q., Zhang, H., Li, H., Li, B., Liu, M., Chen, Y., Zhang, S., Yang, H., and Chen, H., J. Anal. Appl. Pyrolysis, 2023, vol. 173, p. 106039. https://doi.org/10.1016/j.jaap.2023.106039

    Article  CAS  Google Scholar 

  4. Demirbaş, A., Energy Convers. Manage., 2000, vol. 41, no. 6, p. 633. https://doi.org/10.1016/s0196-8904(99)00130-2

    Article  Google Scholar 

  5. Lam, M.K., Khoo, C.G., and Lee, K.T., Biofuels from Algae, Elsevier, 2019, chap. 19, p. 475. https://doi.org/10.1016/b978-0-444-64192-2.00019-6.

  6. Zhou, H., Long, Y., Meng, A., Li, Q., and Zhang, Y., Thermochim. Acta, 2013, vol. 566, p. 36. https://doi.org/10.1016/j.tca.2013.04.040

    Article  CAS  Google Scholar 

  7. Yu, J., Paterson, N., Blamey, J., and Millan, M., Fuel, 2017, vol. 191, p. 140. https://doi.org/10.1016/j.fuel.2016.11.057

    Article  CAS  Google Scholar 

  8. Burhenne, L., Messmer, J., Aicher, T., and Laborie, M.-P., J. Anal. Appl. Pyrolysis, 2013, vol. 101, p. 177. https://doi.org/10.1016/j.jaap.2013.01.012

    Article  CAS  Google Scholar 

  9. Chua, Y.W., Wu, H., and Yu, Y., Proc. Combust. Inst., 2021, vol. 38, no. 3, p. 3977. https://doi.org/10.1016/j.proci.2020.08.014

    Article  CAS  Google Scholar 

  10. Anwar, Z., Gulfraz, M., and Irshad, M., J. Radiat. Res. Appl. Sci., 2014, vol. 7, no. 2, p. 163. https://doi.org/10.1016/j.jrras.2014.02.003

    Article  CAS  Google Scholar 

  11. Raveendran, K., Ganesh, A., and Khilar, K.C., Fuel, 1996, vol. 75, p. 987. https://doi.org/10.1016/0016-2361(96)00030-0

    Article  CAS  Google Scholar 

  12. Senneca, O., Cerciello, F., Russo, C., Wütscher, A., Muhler, M., and Apicella, B., Fuel, 2020, vol. 271, p. 117656. https://doi.org/10.1016/j.fuel.2020.117656

    Article  CAS  Google Scholar 

  13. Yang, H., Yan, R., Chen, H., Lee, D.H., and Zheng, C., Fuel, 2007, vol. 86, nos. 12–13, p. 1781. https://doi.org/10.1016/j.fuel.2006.12.013

    Article  CAS  Google Scholar 

  14. Orfão, J.J.M., Antunes, F.J.A., and Figueiredo, J.L., Fuel, 1999, vol. 78, no. 3, p. 349. https://doi.org/10.1016/s0016-2361(98)00156-2

    Article  Google Scholar 

  15. Wu, Y., Zhao, Z., Li, H., and He, F., J. Fuel Chem. Technol., 2009, vol. 37, p. 427. https://doi.org/10.1016/s1872-5813(10)60002-3

    Article  CAS  Google Scholar 

  16. Reyes, L., Abdelouahed, L., Mohabeer, C., Buvat, J.C., and Taouk, B., Energy Convers. Manage., 2021, vol. 244, p. 114459. https://doi.org/10.1016/j.enconman.2021.114459

    Article  CAS  Google Scholar 

  17. Couhert, C., Commandre, J.-M., and Salvador, S., Fuel, 2009, vol. 88, no. 3, p. 408. https://doi.org/10.1016/j.fuel.2008.09.019

    Article  CAS  Google Scholar 

  18. Sun, C., Tan, H., and Zhang, Y., Renewable Energy, 2023, vol. 205, p. 851. https://doi.org/10.1016/j.renene.2023.02.015

    Article  CAS  Google Scholar 

  19. Gani, A. and Naruse, I., Renewable Energy, 2007, vol. 32, no. 4, p. 649. https://doi.org/10.1016/j.renene.2006.02.017

    Article  CAS  Google Scholar 

  20. Zhu, X., Liu, M., Sun, Q., Ma, J., Xia, A., Huang, Y., Zhu, X., and Liao, Q., Fuel, 2022, vol. 327, p. 125141. https://doi.org/10.1016/j.fuel.2022.125141

    Article  CAS  Google Scholar 

  21. Batenin, V.M., Bessmertnykh, A.V., Zaichenko, V.M., Kosov, V.F., and Sinel’shchikov, V.A., Therm. Eng., 2010, vol. 57, no. 11, p. 946. https://doi.org/10.1134/S0040601510110066

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. M. Zaichenko, V. A. Lavrenov or Yu. M. Faleeva.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Makhlyarchuk

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaichenko, V.M., Lavrenov, V.A. & Faleeva, Y.M. Study of the Slow Pyrolysis of Lignin, Hemicellulose, and Cellulose and the Effect of Their Interaction in Plant Biomass. Solid Fuel Chem. 57, 428–436 (2023). https://doi.org/10.3103/S0361521923060083

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0361521923060083

Keywords:

Navigation