Skip to main content
Log in

Changes in a Chemical Structure of Brown and Bituminous Coals during Low-Temperature Processing under Various Atmospheric Conditions

  • Published:
Solid Fuel Chemistry Aims and scope Submit manuscript

Abstract—In this work infrared attenuated total reflection spectroscopy (ATR IR spectroscopy) was used to study changes in the chemical structure of fine particles of brown and bituminous coals during heat treatment at temperatures up to 350°C in an air atmosphere and with a limited amount of air. Additionally, the thermal effects occurred during the coal processing in this temperature range under similar atmospheric conditions were investigated. It is shown that the bituminous coal samples have noticeable changes in the chemical composition starting from temperatures of 200°C when treated in air, and from 250°C for samples obtained in conditions without air access. Meanwhile, the IR spectra of brown coal samples demonstrate changes starting from temperatures of 200°C regardless of atmospheric processing conditions. Differential scanning calorimetry (DSC) in combination with thermogravimetry (TG) allowed to estimate the quantitative content, thermophysical parameters and the nature of the moisture in the samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Pales, A.F. and Bennett, S., Energy Technology Perspectives 2020, Paris: IEA, 2020.

    Google Scholar 

  2. Saloojee, F., M.Sc. (Eng.) Dissertation, Johannesburg: Univ. Witwatersrand, 2011.

  3. Smith, L.K., Smoot, L.D., Fletcher, T.H., and Pugmire, R.J., The Structure and Reaction Processes of Coal, New York: Plenum Press, 1994.

    Book  Google Scholar 

  4. Jelemensky, L., Zajdlik, R., Markos, J., and Remiarova, B., Acta Montanistica Slovaca Rocnik, 1998, vol. 3, no. 3, p. 295.

    Google Scholar 

  5. Kuznetsov, G.V., Mamontov, G.Ya., and Taratushkina, G.V., Combust. Explos. Shock Waves, 2004, vol. 40, no. 1, p. 70. https://doi.org/10.1023/B:CESW.0000013669.57057.42

    Article  Google Scholar 

  6. Beer, J.M., Prog. Energy Combust. Sci., 2000, vol. 26, p. 301. https://doi.org/10.1016/S0360-1285(00)00007-1

    Article  CAS  Google Scholar 

  7. Lesnykh, A.V., Shtym, K.A., and Golovatyi, S.V., Vologodsk. Chteniya, 2012, vol. 7, no. 4, p. 179.

    Google Scholar 

  8. Golitsyn, M.V., Vyalov, V.I., Bogomolov, A.Kh., Pronina, N.V., Makarova, E.Yu., Mitronov, D.V., Kuzevanova, E.V., and Makarov, D.V., Georesursy, 2015, vol. 2, no. 61, p. 41. https://doi.org/10.18599/grs.61.2.4

    Article  Google Scholar 

  9. Kopp, D.D., Portnova, A.V., and Farberova, E.A., Vestn. Perm. Nats. Issled. Politekh. Univ. Khim. Tekhnol. Biotekhnol., 2019, no. 4, p. 133. https://doi.org/10.15593/2224-9400/2019.4.12

  10. Pekanov, S.V., Razvedka Okhrana Nedr, 2006, no. 11, p. 39.

  11. Kondyrev, B.I., Larionov, M.V., and Priemenko, O.S., Gorn. Inf.-Anal. Byull., 2005, no. 3, p. 244.

  12. Kuznetsov, B.N. and Chesnokov, N.V., Khim. Interesakh Ustoich. Razvit., 2017, vol. 25, no. 3, p. 231. https://doi.org/10.15372/KhUR20170301

    Article  CAS  Google Scholar 

  13. Shchipko, M.L., Eremina, A.O., Golovina, V.V., and Rudkovskii, A.V., Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol., 2009, vol. 52, no. 1, p. 56.

    CAS  Google Scholar 

  14. Isaeva, L.N., Tamarkina, Yu.V., Bovan, D.V., and Kucherenko, V.A., Zh. SFU. Ser. Khim., 2009, vol. 2, no. 1, p. 25.

    Google Scholar 

  15. Chukhrina, V.V. and Zolotareva, N.V., Usp. Khim. Khim. Tekhnol., 2014, vol. 28, no. 1 (150), p. 131.

  16. Beishekeev, K.K., Myrzakhmetov, M.M., Dzhusipbekov, U.Zh., Togabaev, E.T., Eskozhieva, A.B., and Abdurasulov, A.I., Nauka Nov. Tekhnol., 2013. no. 3, p. 28.

  17. Danilov, O.S. and Mikheev, V.A., Gorn. Inf.-Anal. Byull., 2007, no. 11, p. 93.

  18. Eremina, A.O., Golovina, V.V., Ugai, M.Yu., Rudkovskii, A.V., Stepanov, S.G., and Morozov, A.B., Sovrem. Naukoemk. Tekhnol., 2004. no. 2, p. 55.

  19. Patrakov, Yu.F., Semenova, S.A., Fedorova, N.I., Vestn. Kuz. Gos. Tekh. Univ., 2008, vol. 1, no. 65, p. 31.

    Google Scholar 

  20. Shaddix, C.R., Combust. Flame, 2012, vol. 159, p. 3003. https://doi.org/10.1016/j.combustflame.2012.07.013

    Article  CAS  Google Scholar 

  21. Beck, N.C. and Hayhurst, A.N., Combust. Flame, 1990, vol. 79, p. 47. https://doi.org/10.1016/0010-2180(90)90087-8

    Article  CAS  Google Scholar 

  22. Ul'yanova, E.V., Malinnikova, O.N., and Pashichev, B.N., Gorn. Inf.-Anal. Byull., 2020, no. 2, p. 71. https://doi.org/10.25018/0236-1493-2020-2-0-71-81

  23. Bradley, D., Lawes, M., Scott, M.J., and Usta, N., Combust. Flame, 2001, vol. 124, p. 82. https://doi.org/10.1016/S0010-2180(00)00186-3

    Article  CAS  Google Scholar 

  24. Alexeev, A.D., Ulyanova, E.V., Kalugina, N.A., and Degtyar, S.E., Condens. Matter Phys., 2006, vol. 9, no. 1 (45), p. 109.

  25. Shpakodraev, K. M., Zherebtsov, S. I., Mal’chshenko, N.V., and Ismagilov, Z. R., Solid Fuel Chem., 2020, vol. 54, no. 4, p. 219. https://doi.org/10.3103/S0361521920040059

    Article  CAS  Google Scholar 

  26. Tironia, A., Trezza, M.A., Irassar, E.F., and Scian, A.N., Proc. Mater. Sci., 2012, vol. 1, p. 343. https://doi.org/10.1016/j.mspro.2012.06.046

    Article  CAS  Google Scholar 

  27. Xing, Y., Gui, X., Liu, J., Cao, Y., Zhang, Y., and Li, S., Physicochem. Probl. Miner. Process., 2016, vol. 52, no. 2. p. 703. https://doi.org/10.5277/ppmp160215

    Article  Google Scholar 

  28. Tarasenko, I.A., Docotral (Geol.-Mineral.) Dissertation, Vladivistok: DVGIDVORAN, 2014.

  29. Zhang, W., Jiang, Sh., Wang, K., Wang, L., Xu, Y., Wu, Z., Shao, H., Wang, Y., and Miao, M., Int. J. Coal Prep. Util., 2015, vol. 35, no. 1, p. 39. https://doi.org/10.1080/19392699.2013.873421

    Article  CAS  Google Scholar 

  30. Cai, J., Yang, Sh., Hu, X., Xu, Q., Zhou, B., and Zhang, Z., Combust. Sci. Technol., 2018, vol. 191, no. 8, p. 1337. https://doi.org/10.1080/00102202.2018.1527324

    Article  CAS  Google Scholar 

  31. Orrego, J.A., Cabanzo Hernández, R., and Mejía-Ospino, E., Rev. Mexic. Fís., 2010, vol. 56, no. 3, p. 251. https://www.redalyc.org/articulo.oa?id=57019192011

  32. Ryczkowski, J., Eur. Phys. J. Special Topics, 2008, vol. 154, p. 357. https://doi.org/10.1140/epjst/e2008-00575-4

    Article  Google Scholar 

  33. Cheng, J., Zhang, Y., Wang, T., Norris, P., Chen, W., and Pan, W., Energy Fuels, 2017, vol. 31, no. 7, p. 7042. https://doi.org/10.1021/acs.energyfuels.7b01073

    Article  CAS  Google Scholar 

  34. Ponomareva, A.A., Grebenyuk, I.V., Tcoi, K.A., Lesnykh, A.V., Babushok, V.I., and Stym, K.A., IOP Conf. Ser.: J. Phys.: Conf. Ser., 2018, vol. 1115, no. 042031, p. 1. https://doi.org/10.1088/1742-6596/1115/4/042031

  35. Devasahayam, S., Ameen, M.A., Verheyen, T.V., and Bandyopadhyay, S., Minerals, 2015, vol. 5, p. 623. https://doi.org/10.3390/min5040512

    Article  CAS  Google Scholar 

  36. Qin, H., Lu, Z., Yao, S., Li, Z., and Lu, J., J. Anal. At. Spectrom., 2019, vol. 34, p. 347. https://doi.org/10.1039/C8JA00381E

    Article  CAS  Google Scholar 

  37. Chen, Y., Zou, C., Mastalerz, M., Hu, S., Gasaway, C., and Tao, X., Int. J. Mol. Sci., 2015, vol. 16, p. 30223. https://doi.org/10.3390/ijms161226227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yao, S., Zhang, K., Jiao, K., and Hu, W., Energy Explor. Exploit., 2011, vol. 29, no. 1, p. 1. https://www.jstor.org/stable/26160838

  39. Pandey, K.K. and Pitman, A.J., Int. Biodeterior. Biodegrad., 2003, vol. 52, p. 151. https://doi.org/10.1016/S0964-8305(03)00052-0

    Article  CAS  Google Scholar 

  40. Avdontceva, M.S., Zolotarev, A.A., Krivovichev, S.V., Krzhizhanovskaya, M.G., Bocharov, V.N., Shilovskikh, V.V., Zolotarev, A.A., and Rassomakhin, M.A., J Geosci., 2021, vol. 66, p. 147. https://doi.org/10.3190/jgeosci.327

    Article  Google Scholar 

  41. Machowska, A., Kledynski, Z., Wilinska, I., and Pacewska, B., Bull. Mater. Sci., 2019, vol. 42, no. 213, p. 1. https://doi.org/10.1007/s12034-019-1886-1

    Article  CAS  Google Scholar 

  42. Munkhtsetseg, S., Khomich, A.V., Poklonskii, N.A., and Davaasambuu, J., J. Appl. Spectrosc., 2007, vol. 74, no. 3, p. 338. https://doi.org/10.1007/s10812-007-0055-2

    Article  CAS  Google Scholar 

  43. Lynch, I.J. and Webster, D.S., Fuel, 1982, vol. 61, p. 271. https://doi.org/10.1016/0016-2361(82)90124-7

    Article  CAS  Google Scholar 

  44. Mraw, S.C. and O’Rourke, D.F., J. Colloid Interface Sci., 1982, vol. 89, p. 268. https://doi.org/10.1016/0021-9797(82)90140-0

    Article  CAS  Google Scholar 

  45. Dahlstrom, D.A. and Klepper, R.P., Physical Cleaning of Coal: Present and Developing Methods, Liu, YA, Ed., New York: Marcel Dekker, 1982.

    Google Scholar 

  46. Norinaga, K. Kumagai, H., Hayashi, J.-I., and Chiba, T., Energy Fuels, 1998, vol. 12, no. 3, p. 574. https://doi.org/10.1021/ef970183j

    Article  CAS  Google Scholar 

  47. Tahmasebi, A., Yu, J., Su, H., Han, Y., Lucas, J., Zheng, H., and Wall, T., Fuel, 2014, vol. 135, p. 243. https://doi.org/10.1016/j.fuel.2014.06.068

    Article  CAS  Google Scholar 

  48. Tahmasebi, A., Yu, J., Han, Y., Yin, F., Bhattacharya, S., and Stokie, D., Energy Fuels, 2012, vol. 26, no. 6 P, p. 3651. https://doi.org/10.1021/ef300559b

  49. Tahmasebi, A., Yu, J., Han, Y., and Li, X., Fuel Proc. Technol., 2012, vol. 101, p. 85. https://doi.org/10.1016/j.fuproc.2012.04.005

    Article  CAS  Google Scholar 

  50. Tahmasebi, A., Yu, J., and Bhattacharya, S., Energy Fuels, 2012, vol. 27, no. 1, p. 154. https://doi.org/10.1021/ef3016443

    Article  CAS  Google Scholar 

  51. Karsner, G.G. and Perlmutter, D.D., AIChE J., 1982, vol. 28, p. 199. https://doi.org/10.1002/aic.690280206

    Article  CAS  Google Scholar 

  52. Yu, J.S., Coal Chemistry, Beijing: Metallurgical Industry Press, 2000, p. 162.

    Google Scholar 

Download references

Funding

The work was supported by the Ministry of Science and Higher Education of the Russian Federation (Project No. 075-15-2020-806).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. A. Ponomareva, E. E. Korostyleva, V.E. Sitnikova, К. А. Тсоi or A.V. Lesnykh.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ponomareva, A.A., Korostyleva, E.E., Sitnikova, V. et al. Changes in a Chemical Structure of Brown and Bituminous Coals during Low-Temperature Processing under Various Atmospheric Conditions. Solid Fuel Chem. 56, 315–322 (2022). https://doi.org/10.3103/S0361521922050081

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0361521922050081

Keywords:

Navigation