Skip to main content
Log in

Evaluating Energy Potential based on a Characterization Analysis of Refuse-derived Fuel Resources

  • Published:
Solid Fuel Chemistry Aims and scope Submit manuscript

Abstract

Regarding abiotic depletion and energy demand in the world, Refuse-Derived Fuel (RDF), inclusive of high calorific fractions from Municipal Solid Waste (MSW), is being widely used in waste-to-energy plants orfacilities. This present study aims to evaluate energy potential based on a characterization analysis of RDF from MSW in Pyongyang, the DPR Korea. This study investigates Moisture Contents (MCs), Ash Contents (ACs), and Gross Calorific Values (GCVs) of RDF samples (i.e. kitchen waste, paper & cardboard, mixed plastics) from MSW in accordance with the standards-DIN EN series, while it suggests an illustrative diagram of evaluating energy potential based on the investigation of RDF samples. The results show that significant differences between the samples are observed in MCs, ACs and GCVs, while slight discrepancies between this present study and previous ones are found, which could be due to the characteristics of the samples and the experimental methodologies. The results also indicate that the energy potential of the RDF resources considered in this study, as calculated by Net Calorific Values (NCVs) converted from the GCVs, is approximately evaluated to be 125.937.3 GJ/yr in the municipality. The findings could contribute to develop a waste-to-energy strategy in municipalities and give lessons to the local planners.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Materazzi, M., Lettieri, P., Taylor, R., and Chapman, C., Waste Manag., 2016, vol. 47, p. 256.

    Article  CAS  PubMed  Google Scholar 

  2. Campuzano, R. and Gonzalez-Martinez, S., Waste Manag., 2016, vol. 54, p. 3.

    Article  CAS  PubMed  Google Scholar 

  3. Shao, L.M., Ma, Z.H., Zhang, H., Zhang, D.Q., and He, P.J., Waste Manag., 2010, vol. 30, no. 7, p. 1165.

    Article  CAS  PubMed  Google Scholar 

  4. Obileke, K., Nwokolo, N., Makaka, G., Mukumba, P., and Onyeaka, H., Energy Environ., 2021, vol. 32, no. 2, p. 191.

    Article  CAS  Google Scholar 

  5. Lin, X., Wang, F., Chi, Y., Huang, Q., and Yan, J., Waste Manag., 2015, vol. 36, p. 24.

    Article  PubMed  Google Scholar 

  6. Dong, J., Tang, A., Nzihou, Y., Chi, E., Weiss-Hortala, M.N., and Zhou, Z., J. Cleaner Prod., 2018, vol. 203, p. 287.

    Article  CAS  Google Scholar 

  7. Abdul Malek, A., Hasanuzzaman, M., Rahim, N.A., and Al-Turki, Y.A., Energy Environ., 2021, vol. 32, no. 2, p. 295.

    Article  CAS  Google Scholar 

  8. Beyene, H.D., Werkneh, A.A., and Ambaye, T.G., Renew. Energy Focus, 2018, vol. 24, p. 1.

    Article  Google Scholar 

  9. Hwang, C.J., Ri, P.C., and Kim, C.H., Energy, 2020, vol. 174, no. 1, p. 35.

    Google Scholar 

  10. Akdağ, A.S., Atιmtay, A., and Sanin, F.D., Waste Manag., 2016, vol. 46, p. 217.

    Google Scholar 

  11. Gallardo, A., Carlos, M., Bovea, M.D., and Colomer, F.J., J. Cleaner Prod., 2014, vol. 83, p. 118.

    Article  CAS  Google Scholar 

  12. Lurii, V.G. and Kost, L.A., Solid Fuel Chem., 2019, vol. 53, no. 6, p. 377.

    Article  CAS  Google Scholar 

  13. Dolgen, D., Sarptas, H., Alpaslan, N., and Kucukgul, O., Energy Sources, Part A: Recovery, Utilizat., Environ. Effects, 2005, vol. 27, no. 15, p. 1483.

    CAS  Google Scholar 

  14. Giugliano, M., Grosso, M., and Rigamonti, L., Waste Manag., 2008, vol. 28, p. 39.

    Article  CAS  PubMed  Google Scholar 

  15. Wagland, S.T., Kilgallon, P., Coveney, R., Garg, A., Smith, R., Longhurst, P.J., Pollard, S.J.T., and Simms, N., Waste Manag., 2011, vol. 31, no. 1, p. 1176.

    Article  CAS  PubMed  Google Scholar 

  16. Psomopoulos, C.S. and Themelis, N.J., Energy Sources, Part A: Recovery, Utilizat., Environ. Effects, 2015, vol. 37, no. 16, p. 1813.

    CAS  Google Scholar 

  17. Shi, H., Mahinpey, N., Aqsha, A., and Silbermann, R., Waste Manag., 2016, vol. 48, p. 34.

    Article  CAS  PubMed  Google Scholar 

  18. Vounatsos, P., Atsonios, K., Itskos, G., Agraniotis, M., Grammelis, P., and Kakaras, P., Waste Biomass Valoriz., 2016, vol. 7, no. 5, p. 1297.

    Article  CAS  Google Scholar 

  19. Edjabou, M.E., Jensen, M.B., Gotze, R., Pivnenko, K., Petersen, C., Scheutz, C., and Astrup, T.F., Waste Manag., 2015, vol. 36, p. 12.

    Article  PubMed  Google Scholar 

  20. Hla, S.S. and Roberts, D., Waste Manag., 2015, vol. 41, p. 12.

    Article  CAS  PubMed  Google Scholar 

  21. Sarc, R. and Lorber, K.E., Waste Manag., 2013, vol. 33, no. 9, p. 1825.

    Article  CAS  PubMed  Google Scholar 

  22. Boer, Ed., Jedrczak, A., Kowalski, Z., Kulczycka, J., and Szpadt, R., Waste Manag., 2010, vol. 30, no. 3, p. 369.

    Article  PubMed  Google Scholar 

  23. DIN EN 15443:2011. Solid Recovered Fuels—Methods for the Preparation of the Laboratory Sample, 2011.

  24. DIN EN 15414-3:2011. Solid Recovered Fuels—Determination of Moisture Content using the Oven Dry Method—Part 3: Moisture in General Analysis Sample, 2011.

  25. DIN 51719:1997. Testing of Solid Fuels—Solid Mineral Fuels—Determination of Ash Content, 1997.

  26. DIN EN 15400:2011. Solid Recovered Fuels—Determination of Calorific Value, 2011.

  27. Kim, W.G. and Kim, G.S., Waste Res. Manag., 2018, vol. 170, p. 139.

    Google Scholar 

  28. Pak, H.S., Sin, Y.C., Ri, Y.H., and Kim, Y.N., Energy Sources, Part A: Recovery, Utilizat., Environ. Effects, 2018, vol. 40, no. 24, p. 2914.

    Google Scholar 

  29. Gotze, R., Pivnenko, K., Boldrin, A., Scheutz, C., and Astrup, T.F., Waste Manag., 2016, vol. 54, p. 13.

    Article  CAS  PubMed  Google Scholar 

  30. Hansen, T.L., Jansen, J.C., Spliid, H., Davidsson, A., and Christensen, T.H., Waste Manag., 2007, vol. 27, no. 4, p. 510.

    Article  PubMed  Google Scholar 

  31. UNEP (the United Nations Environment Programme). Environment and Climate Change Outlook, Ministry of Land and Environment Protection, Pyongyang, Democratic People’s Republic of Korea. https://www.unenvironment.org/resources/report/environment-and-climate-change-outlook. Accessed November 28, 2017.

  32. Lombardi, L., Carnevale, E., and Corti, A., Waste Manag., 2015, vol. 37, p. 26.

    Article  PubMed  Google Scholar 

  33. Vaisberg, L.A., Mikhailova, N.V., and Gerasimov, A.M., Solid Fuel Chem., 2017, vol. 51, no. 1, p. 57.

    Article  CAS  Google Scholar 

  34. Hantoro, R., Septyaningrum, E., Siswanto, B.B., and Izdiharrudin, M.F., Solid Fuel Chem., 2020, vol. 54, no. 6, p. 418.

    Article  CAS  Google Scholar 

  35. Nam-Chol O, Choe, T.H., Kim, J.H., and Choe, C.M., Proceedings of the Institution of Civil Engineers, Energy, 2022. https://doi.org/10.1680/jener.21.00099

  36. Arena, U., Waste Manag., 2012, vol. 32, no. 4, p. 625.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nam–Chol O.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hwang, C., O, N., Jo, C. et al. Evaluating Energy Potential based on a Characterization Analysis of Refuse-derived Fuel Resources. Solid Fuel Chem. 56, 380–386 (2022). https://doi.org/10.3103/S0361521922050056

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0361521922050056

Keywords:

Navigation