Skip to main content
Log in

Heat Treatment of Irradiated Graphite in an Oxidizing Atmosphere

  • Published:
Solid Fuel Chemistry Aims and scope Submit manuscript

Abstract

It was demonstrated that thermal treatment and decontamination methods can be used for the processing of irradiated nuclear graphite. Special features of the treatment of the irradiated graphite surface with an oxidizing agent were considered. A mathematical model of the interaction of a gaseous oxidizing agent with irradiated graphite was described with consideration for the release of stored Wigner energy. It was established that the qualitative and quantitative compositions of gaseous reaction products depend on thermal and gas-dynamic process conditions. The mathematical models and calculation algorithms proposed can be used for the process optimization of the heat treatment of irradiated graphite for the selective recovery of a number of radionuclides (mainly, 14C and 36Cl), which are concentrated in a thin near-surface layer of graphite components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Izmestiev, A., Pavliuk, A., and Kotlyarevsky, S., Adv. Mat. Res., 2015, vol. 1084, p. 613.

    CAS  Google Scholar 

  2. Pavliuk, A.O., Kotlyarevskiy, S.G., Bespala, E.V., Zakarova, E.V., Rodygina, N.I., Ermolaev, V.M., Proshin, I.M., and Volkova, A.G., IOP Conf. Ser. Mat. Sci. Eng., 2016, no. 142, p. 1.

    Google Scholar 

  3. Jackson, S.F., Monk, S.D., and Riaz, Z., Appl. Radiat. Isot., 2014, vol. 94, p. 254.

    Article  CAS  PubMed  Google Scholar 

  4. Dawson, J.W., Gas-Cooled Nuclear Reactor Designs, Operation and Fuel Cycle, London: Woodhead, 2002.

    Google Scholar 

  5. Wickham, A., Steinmetz, H.-J., O’Sullivan, P., and Ojovan, M.I., J. Environ. Radioact., 2017, vol. 171, p. 34.

    Article  CAS  PubMed  Google Scholar 

  6. Bespala, E., Novoselov, I., and Ushakov, I., MATEC Web Conf., 2016, vol. 72, p. 1.

    Article  CAS  Google Scholar 

  7. Bespala, E.V., Pavlyuk, A.O., and Kotlyarevskii, S.G., Al’tern. Energ. Ekol., 2015, no. 23 (187), p. 19.

    Google Scholar 

  8. Delyagin, G.N., Fiz. Goreniya Vzryva, 1983, no. 4, p. 110.

    Google Scholar 

  9. Chelliah, H.K., Model. Comb. Sci., 1995, vol. 17, p. 131.

    Google Scholar 

  10. Dragan, G.S., Zui, O.N., Kalinchak, V.V., and Kuryatnikov, V.V., Fiz. Aerodispersn. Sist., 2004, no. 41, p. 311.

    Google Scholar 

  11. Mazanchenko, E.P. and Gremyachkin, V.M., Fiz.-Khim. Kinet. Gaz. Dinam., 2010, no. 9, p. 1.

    Google Scholar 

  12. Salganskii, E.A., Fursov, V.P., Glazov, S.V., Salganskaya, M.V., and Manelis, G.B., Fiz. Goreniya Vzryva, 2003, vol. 39, no. 1, p. 44.

    CAS  Google Scholar 

  13. Golovin, A.M. and Pesochin, V.R., Fiz. Goreniya Vzryva, 1989, no. 6, p. 29.

    Google Scholar 

  14. Trusov, B.G., Sb. mater. III Mezhdunar. simp. po teoreticheskoi i prikladnoi plazmokhimii (Proc. III Int. Symp. on Theoretical and Applied Plasma Chemistry), Ples, 2002, p. 217.

    Google Scholar 

  15. Karpenko, E.I., Messerle, V.E., Trusov, B.G., Tyutebaev, S.S., and Ustimenko, A.B., Gorenie Plazmokhim., 2003, vol. 1, no. 4, p. 291.

    CAS  Google Scholar 

  16. Gurvich, L.V., Veits, I.V., and Medvedev, V.A., Termodinamicheskie svoistva individual’nykh veshchestv (Thermodynamic Properties of Individual Substances), Moscow: Nauka, 1978.

    Google Scholar 

  17. Golovina, E.S., Vysokotemperaturnoe gorenie i gazifikatsiya ugleroda (High-Temperature Combustion and Gasification of Carbon), Moscow: Energoatomizdat, 1983.

    Google Scholar 

  18. Zel’dovich, Ya.B., Barenblatt, G.N., Librovich, V.B., and Makhvilazde, G.M., Matematicheskaya teoriya goreniya i vzryva (Mathematical Theory of Combustion and Explosion), Moscow: Nauka, 1980.

    Google Scholar 

  19. Goncharov, V.V., Burdakov, N.S., and Virgil’ev, Yu.S., Deistvie oblucheniya na grafit yadernykh reaktorov (Effect of Irradiation on the Graphite of Nuclear Reactors), Moscow: Atomizdat, 1978.

    Google Scholar 

  20. Adjizian, J.J., Latham, C.D., Oberg, S., Briddon, P.R., and Heggie, M.I., Carbon, 2013, vol. 62, p. 256.

    Article  CAS  Google Scholar 

  21. Latham, C.D., Heggie, M.I., Alatalo, M., Oberg, S., and Briddon, P.R., J. Phys. Condens. Matter, 2013, vol. 25, p. 1088.

    Article  CAS  Google Scholar 

  22. Tsyganov, A.A., Kotlyarevskii, S.G., Pavlyuk, A.O., Shamanin, I.V., and Nesterov, V.N., Izv. TPU, 2008, vol. 312, no. 2, p. 32.

    Google Scholar 

  23. Bespala, E.V., Pavliuk, A.O., and Kotlyarevskiy, S.G., IOP Conf. Ser. Mat. Sci. Eng., 2015, vol. 93, p. 1.

    Google Scholar 

  24. Walker, P.L., Jr., Taylor, T.L., and Ranish, J.M., Carbon, 1991, vol. 29, p. 1016.

    Article  Google Scholar 

  25. Glushkov, D.O., Kuznetsov, G.V., and Strizhak, P.A., Fiz. Goreniya Vzryva, 2014, vol. 50, no. 6, p. 54.

    Google Scholar 

  26. Salganskii, E.A., Kislov, V.M., Glazov, S.V., Zholudev, A.F., and Manelis, G.B., Fiz. Goreniya Vzryva, 2008, vol. 44, no. 3, p. 30.

    CAS  Google Scholar 

  27. Belyaev, A.F., Gorenie, detonatsiya i rabota vzryva kondensirovannykh sistem (Combustion, Detonation, and Explosion Work of Condensed Systems), Moscow: Nauka, 1968.

    Google Scholar 

  28. Arkhipov, V.A., Korotkikh, A.G., and Gol’din, V.D., Khim. Fiz. Mezoskopiya, 2012, vol. 14, no. 2, p. 161.

    CAS  Google Scholar 

  29. Dostov, A.I., Teplofiz. Vys. Temp., 2005, vol. 43, no. 2, p. 267.

    Google Scholar 

  30. Salganskii, E.A., Polianchik, E.V., and Manelis, G.B., Fiz. Goreniya Vzryva, 2013, vol. 49, no. 1, p. 45.

    Google Scholar 

  31. Ippolitov, E.G., Artemov, A.V., and Batrakov, V.V., Fizicheskaya khimiya (Physical Chemistry), Moscow: Akademiya, 2005.

    Google Scholar 

  32. Abiev, R.Sh., Bibik, E.E., Vlasov, E.A., Ermakov, B.S., Zotikov, V.S., Ivanov, V.A., Simanova, S.A., Suvorov, K.A., Khokhryakov, K.A., and Yablokova, M.A., Novyi spravochnik khimika i tekhnologa. Elektrodnye protsessy. Khimicheskaya kinetika i diffuziya. Kolloidnaya khimiya (A New Handbook for Chemists and Technologists: Electrode Processes, Chemical Kinetics and Diffusion, and Colloidal Chemistry), St. Petersburg: Professional, 2004

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Bespala.

Additional information

Original Russian Text © E.V. Bespala, A.O. Pavlyuk, S.G. Kotlyarevskii, I.Yu. Novoselov, Yu.R. Bespala, 2018, published in Khimiya Tverdogo Topliva, 2018, No. 5, pp. 54–62.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bespala, E.V., Pavlyuk, A.O., Kotlyarevskii, S.G. et al. Heat Treatment of Irradiated Graphite in an Oxidizing Atmosphere. Solid Fuel Chem. 52, 328–335 (2018). https://doi.org/10.3103/S0361521918050026

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0361521918050026

Keywords

Navigation