Skip to main content
Log in

Thermolysis of brown coal in the presence of alkali metal hydroxides

  • Published:
Solid Fuel Chemistry Aims and scope Submit manuscript

Abstract

The thermolysis (≤500°C) of brown coal impregnated with alkali metal hydroxides MOH was studied. Alkalis cause the cleavage of a three-dimensional coal framework into fragments similar to humic acids. The initial rate of the process increases with the diameter of a cation. For the brown coal–KOH compound, an increase in the temperature from 110 to 400°C increased the rate of fragmentation by a factor of ~200 to cause the almost complete (≥90 wt %) decomposition of coal. The promotion of condensational reactions that cause a decrease in the yield of low-molecular-weight volatile organic products is a competing process. In the presence of MOH, the buildup of radicals is changed: a local maximum (at 200–250°C) is formed in the temperature dependence of the concentration of unpaired electrons; the temperature of this maximum and the values of [e ] depend on the nature of MOH. In the series of alkalis from LiOH to CsOH, the EPR signal broadened from 0.63 to 0.84 mT due to the formation of semiquinone radical anions and the interaction of an unpaired electron with a cation. A reaction scheme was proposed for the processes of the thermolysis (to 400°C) of brown coal with MOH; it includes the cleavage of a coal framework by the simultaneous heterolysis and homolysis of C–O and C–C bonds with the subsequent formation of a secondary lattice due to polycondensation and radical polymerization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Marsh, H. and Rodriguez-Reinoso, F., Activated Carbon, Amsterdam: Elsevier, 2006.

    Google Scholar 

  2. Lillo-Rodenas, M.A., Cazorla-Amoros, D., and Linares-Solano, A., Carbon, 2003, vol. 41, no. 2, p. 267.

    Article  CAS  Google Scholar 

  3. Amarasekera, G., Scarlett, M.J., and Mainwaring, D.E., Carbon, 1998, vol. 36, nos. 7-8, p. 1071.

    Article  CAS  Google Scholar 

  4. Nowicki, P., Pietrzak, R., and Wachowska, H., Energy Fuels, 2010, vol. 24, no. 2, p. 1197.

    Article  CAS  Google Scholar 

  5. He, X., Geng, Y., Qiu, J., Zheng, M., Zhang, X., and Shui, H., Energy Fuels, 2010, vol. 24, no. 6, p. 3603.

    Article  CAS  Google Scholar 

  6. Kucherenko, V.A., Shendrik, T.G., Tamarkina, Y.V., and Mysyk, R.D., Carbon, 2010, vol. 48, no. 15, p. 4556.

    Article  CAS  Google Scholar 

  7. Yoshizawa, N., Maruyama, K., and Yamada, Y., Fuel, 2002, vol. 81, no. 13, p. 1717.

    Article  CAS  Google Scholar 

  8. Tamarkina, Y.V., Kucherenko, V.A., and Shendrik, T.G., Solid Fuel Chem., 2012, vol. 46, no. 5, p. 289.

    Article  CAS  Google Scholar 

  9. Mikova, N.M., Chesnokov, N.V., and Kuznetsov, B.N., J. Siber. Fed. Univ. Chem., 2009, vol. 2, p. 3.

    Google Scholar 

  10. Lillo-Rodenas, M.A., Marco-Lozar, J.P., Cazorla-Amoros, D., and Linares-Solano, A., J. Anal. Appl. Pyrolysis, 2007, vol. 80, no. 1, p. 166.

    Article  CAS  Google Scholar 

  11. Bellamy, L.J., The Infrared Spectra of Complex Molecules, London: Chapman and Hall, 1975.

    Book  Google Scholar 

  12. Orlov, D.S. and Osipova, N.N., Infrakrasnye spektry pochv i pochvennykh komponentov (Infrared Spectra of Soils and Soil Components), Moscow: Izd. Mosk. Gos. Univ., 1988.

    Google Scholar 

  13. Wang, S.-H. and Griffits, P.R., Fuel, 1985, vol. 64, no. 2, p. 229.

    Article  CAS  Google Scholar 

  14. Wertz, J. and Bolton, J., Electron Spin Resonance, New York: McGraw-Hill, 1972.

    Google Scholar 

  15. Gankina, L.V., Sukhov, V.A., and Lukovnikov, A.F., Khim. Tverd. Topl. (Moscow), 1980, no. 1, p. 105.

    Google Scholar 

  16. Tamarkina, Yu.V., Kucherenko, V.A., and Shendrik, T.G., Khim. Tverd. Topl. (Moscow), 2014, no. 4, p. 40.

    Google Scholar 

  17. Sancier, K.M., Fuel, 1984, vol. 63, no. 5, p. 679.

    Article  CAS  Google Scholar 

  18. Utz, B.R., Nowak, M.A., and Fauth, D.J., Proc. Int. Conf. Coal Sci., Tokyo, 1989, vol. 1, p. 197.

    Google Scholar 

  19. Nesmeyanov, A.N. and Nesmeyanov, N.A., Nachala organicheskoi khimii (Principles of Organic Chemistry), Moscow: Khimiya, 1974, part2.

    Google Scholar 

  20. Tamarkina, Yu.V., Tamko, V.A., Kucherenko, V.A, and Shendrik, T.G., Zh. Prikl. Khim. (S.-Peterburg), 2013, vol. 86, no. 12, p. 1.

    Google Scholar 

  21. Robau-Sanchez, A., Cordero-de la Rosa, F., Aguilar-Pliego, J., and Aguilar-Elguezabal, A., J. Porous Mater., 2006, vol. 13, no. 2, p. 123.

    Article  CAS  Google Scholar 

  22. Raymundo-Pinero, E., Azais, P., and Cacciaguerra, T., Carbon, 2005, vol. 43, no. 4, p. 786.

    Article  CAS  Google Scholar 

  23. Klar, E., Politsiklicheskie uglevodorody (Polycyclic Hydrocarbons), Moscow: Khimiya, 1971, vol.2.

  24. Hayashi, J. and Miura, K., Adv. Sci. Victorian Brown Coal, 2004, p. 134.

    Book  Google Scholar 

  25. Tamarkina, Yu.I., Bovan, L.A., and Kucherenko, V.A., Vopr. Khim. Khim. Tekhnol., 2008, no. 2, p. 112.

    Google Scholar 

  26. Todres, Z.V., Ion-radikaly v organicheskom sinteze (Radical Ions in Organic Synthesis), Moscow: Khimiya, 1986.

    Google Scholar 

  27. Kucherenko, V.A. and Zubova, T.I., Zh. Obshch. Khim., 1995, vol. 65, no. 8, p. 1256.

    CAS  Google Scholar 

  28. Spravochnik khimika (Chemist’s Handbook) Nikol’skii, B.P., Ed., Moscow: Khimiya, 1982, vol. 1, p. 382.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Tamarkina.

Additional information

Original Russian Text © V.A. Kucherenko, Yu.V. Tamarkina, G.F. Raenko, M.I. Chernyshova, 2017, published in Khimiya Tverdogo Topliva, 2017, No. 3, pp. 16–24.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kucherenko, V.A., Tamarkina, Y.V., Raenko, G.F. et al. Thermolysis of brown coal in the presence of alkali metal hydroxides. Solid Fuel Chem. 51, 147–154 (2017). https://doi.org/10.3103/S0361521917030065

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0361521917030065

Navigation