Skip to main content
Log in

Simulation of the process of coal dust ignition in the presence of metal particles

  • Published:
Solid Fuel Chemistry Aims and scope Submit manuscript

Abstract

A mathematical model was developed for the gas-phase ignition of a layer of the dust of typical 2B brown coal by a metal particle heated to high temperatures (above 1100 K) under ideal thermal contact conditions. This model took into account the heating and thermal decomposition of ground coal upon the cooling of a local source, the yield of volatile components, and the formation, heating, and ignition of the gas mixture. The effect of heat source parameters (shape and dimensions) on the fundamental process characteristic—the delay time of ignition—was found. A relationship of the ignition zone position near a hot particle with the heating intensity of a gas mixture of volatile substances and an oxidizing agent was revealed. The results of numerical studies are consistent with well-known experimental data on the conditions and characteristics of ground coal burning on local heating by sources of limited energy capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zekel, L.A., Krasnobaeva, N.V., and Shpirt, M.Ya., Solid Fuel Chem., 2004, vol. 38, no. 3, p. 72.

    Google Scholar 

  2. Arkhipov, A.M. and Putilov, V.Ya., Therm. Eng., 2009, vol. 56, no. 8, p. 680.

    Article  Google Scholar 

  3. Gagarin, S.G. and Gyul’Maliev, A.M., Solid Fuel Chem., 2009, vol. 43, no. 1, p. 17.

    Article  Google Scholar 

  4. Maloletnev, A.S., Krichko, A.A., and Garkusha, A.A., Poluchenie sinteticheskogo zhidkogo topliva gidrogenizatsiei uglei (Production of Synthetic Liquid Fuel by Coal Hydrogenation), Moscow Nedra, 1992.

    Google Scholar 

  5. Krapchin, I.P. and Potapenko, E.Y., Solid Fuel Chem., 2004, vol. 38, no. 5, p. 53.

    Google Scholar 

  6. Potapenko, I.O., Solid Fuel Chem., 2003, vol. 37, no. 6, p. 79.

    Google Scholar 

  7. Shpirt, M.Y., Lavrinenko, A.A., Kuznetsova, I.N., and Gyul’Maliev, A.M., Solid Fuel Chem., 2013, vol. 47, no. 6, p. 353.

    Article  CAS  Google Scholar 

  8. Kuznetsov, B.N., Shchipko, M.L., Chesnokov, N.V., et al., Khim. Interesakh Ustoich. Razvit., 2005, vol. 13, no. 4, p. 521.

    CAS  Google Scholar 

  9. Storozhenko, G.I., Stolboushkin, A.Yu., and Ivanov, A.I., Stroit. Mater., 2015, no. 8, p. 50.

    Google Scholar 

  10. Fedorov, A. and Khmel, T., Combust., Expl. Shock Waves, 2005, vol. 41, no. 1, p. 78.

    Article  Google Scholar 

  11. Krainov, A.Yu. and Baimler, V.A., Combust., Expl. Shock Waves, 2002, vol. 38, no. 3, p. 278.

    Article  Google Scholar 

  12. El-Sayed, S.A. and Khass, T.M., Combust., Expl. Shock Waves, 2013, vol. 49, no. 3, p. 159.

    Article  Google Scholar 

  13. Joshi, K.A., Raghavan, V., and Rangwala, A.S., Combust. Flame, 2012, vol. 159, no. 1, p. 376.

    Article  CAS  Google Scholar 

  14. Glushkov, D.O., Kuznetsov, G.V., and Strizhak, P.A., Russ. J. Phys. Chem. B, 2013, vol. 7, no. 3, p. 269.

    Article  CAS  Google Scholar 

  15. Yang, J., Wang, S., and Chen, H., Int. J. Heat Mass Transfer, 2016, vol. 97, p. 146.

    Article  Google Scholar 

  16. Glushkov, D.O., Kuznetsov, G.V., Strizhak, P.A., and Sharypov, O.V., Solid Fuel Chem., 2016, vol. 50, no. 4, p. 213

    Article  CAS  Google Scholar 

  17. Wang, S., Chen, H., and Liu, N., J. Hazard. Mater., 2015, vol. 283, p. 536.

    Article  CAS  Google Scholar 

  18. Glushkov, D.O. and Strizhak, P.A., Khim. Fiz. Mezoskopiya, 2012, vol. 14, no. 3, p. 334.

    CAS  Google Scholar 

  19. Zavorin, A.S., Dolgikh, A.Yu., Salomatov, V.V., et al., Izv. Tomsk. Politekh. Univ., 2014, vol. 324, no. 4, p. 47.

    Google Scholar 

  20. Burkina, R.S. and Mikova, E.A., Combust., Expl. Shock Waves, 2009, vol. 45, no. 2, p. 144.

    Article  Google Scholar 

  21. Zel’dovich, Ya.B., Leipunskii, O.I., and Librovich, V.B., Teoriya nestatsionarnogo goreniya porokha (Theory of the Nonstationary Combustion of Gunpowders), Moscow Nauka, 1975.

    Google Scholar 

  22. Averson, A.E., Barzykin, V.V., and Merzhanov, A.G., Dokl. Akad. Nauk SSSR, 1968, vol. 178, no. 1, p. 131.

    Google Scholar 

  23. Vilyunov, V.N. and Kolchin, A.K., Combust., Expl. Shock Waves, 1969, vol. 2, no. 3, p. 61.

    Article  Google Scholar 

  24. Grishin, A.M. and Subbotin, A.N., Teplo- i massoperenos (Heat and Mass Transfer), Minsk: Izd. ITMO ANBSSR, 1972, vol. 1, part 1, p. 286.

    Google Scholar 

  25. Assovskii, I.G., Fizika goreniya i vnutrennyaya ballistika (Combustion Physics and Internal Ballistics), Moscow Nauka, 2005.

    Google Scholar 

  26. Zakharevich, A.V. and Ogorodnikov, V.N., Pozharovzryvobezopasnost’, 2013, vol. 22, no. 3, p. 13.

    CAS  Google Scholar 

  27. Vargaftik, N.B., Spravochnik po teplofizicheskim svoistvam gazov i zhidkostei (Handbook of the Thermophysical Properties of Gases and Liquids), Moscow OOO Stars, 2006.

    Google Scholar 

  28. Chirkin, V.S., Teplofizicheskie svoistva materialov: spravochnoe rukovodstvo (Thermophysical Properties of Materials: A Handbook), Moscow Gos. Izd. Fiz.-Mat. Lit., 1959.

    Google Scholar 

  29. Agroskin, A.A. and Gleibman, V.B., Teplofizika tverdogo topliva (Thermal Physics of Solid Fuel), Moscow Nedra, 1980.

    Google Scholar 

  30. Agroskin, A.A. and Goncharov, E.I., Koks Khim., 1965, no. 7, p. 8.

    Google Scholar 

  31. Agroskin, A.A., Goncharov, E.I., Tyagunov, V.M., et al., Koks Khim., 1977, no. 8, p. 12.

    Google Scholar 

  32. Boiko, E.A., Didichin, D.G., and Shishmarev, P.V., Solid Fuel Chem., 2004, vol. 38, no. 3, p. 1.

    Google Scholar 

  33. Mar’yandyshev, P.A., Chernov, A.A., and Lyubov, V.K., Vestn. Sev. (Arktich.) Feder. Univ., Ser. Estestv. Nauki, 2015, no. 2, p. 118.

    Google Scholar 

  34. Kutateladze, S.S., Osnovy teorii teploobmena (Fundamentals of the Theory of Heat Transfer), Moscow Atomizdat, 1979.

    Google Scholar 

  35. Kuznetsov G.V. and Strizhak P.A., Combust., Expl. Shock Waves, 2009, vol. 45, no. 5, p. 543.

    Article  Google Scholar 

  36. Glushkov, D.O., Legros, J.-C., Strizhak, P.A., and Zakharevich, A.V., Fuel, 2016, vol. 175, p. 105.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. O. Glushkov.

Additional information

Original Russian Text © D.O. Glushkov, G.V. Kuznetsov, P.A. Strizhak, 2017, published in Khimiya Tverdogo Topliva, 2017, No. 1, pp. 28–35.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glushkov, D.O., Kuznetsov, G.V. & Strizhak, P.A. Simulation of the process of coal dust ignition in the presence of metal particles. Solid Fuel Chem. 51, 24–31 (2017). https://doi.org/10.3103/S0361521917010050

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0361521917010050

Navigation