Skip to main content
Log in

Alkaline activation of coals and carbon-base materials

  • Published:
Solid Fuel Chemistry Aims and scope Submit manuscript

Abstract

Data on the reactions and processes occurring under the conditions of the alkaline activation of carbon substances—the production of activated carbons by the thermolysis of carbon substances in the presence of alkali metal hydroxides MOH—are summarized. The following most important activation processes were recognized: (1) the interaction of functional groups with MOH and the formation of intermediate structures with the C-O-M group; (2) their conversion into metal-containing compounds (primarily, M2CO3 and M2O) in reactions with carbon, especially, with terminal C atoms on the periphery of graphenes; and (3) the reduction of M2CO3 and M2O to the metal M, which is intercalated into the interlayer spaces of crystallites. The mechanism of alkaline activation was studied in most detail for KOH as an activating agent. The thermally initiated reduction of potassium oxide with carbon and the intercalation of potassium metal are the two most important processes for the development of the microporosity of activated carbon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Marsh, H. and Rodriguez-Reinoso, F., Activated Carbon, Amsterdam: Elsevier, 2006.

    Google Scholar 

  2. Evans, M.J.B., Halliop, E., and Macdonald, J.A.F., Carbon, 1999, vol. 37, no. 2, p. 269.

    Article  CAS  Google Scholar 

  3. Yang, S., Hu, H., and Chen, G., Carbon, 2002, vol. 40, no. 3, p. 277.

    Article  CAS  Google Scholar 

  4. Bansal, R.C. and Goyal, M., Activated Carbon Adsorption, Boca Raton, FL: Taylor & Francis Group, 2005.

    Book  Google Scholar 

  5. Jorda-Beneyto, M., Suarez-Garcia, F., Lozano-Castello, D., et al., @Carbon, 2007, vol. 45, no. 2, p. 293.

    Article  CAS  Google Scholar 

  6. Celzard, A. and Fierro, V., Energy Fuels, 2005, vol. 19, no. 2, p. 573.

    Article  CAS  Google Scholar 

  7. Conway, B.E., Electrochemical Supercapacitors—Scientific Fundamentals and Technological Applications, New York: Kluwer Acad. Plenum.

  8. Guy, P.J. and Perry, G.J., Fuel, 1992, vol. 71, no. 10, p. 1083.

    Article  CAS  Google Scholar 

  9. Amarasekera, G., Scarlett, M.J., and Mainwaring, D.E., Carbon, 1998, vol. 36, no. 78, p. 1071.

    Article  CAS  Google Scholar 

  10. Ehrburger, P., Addoun, A., Addoun, F., and Donnet, J.-B., Fuel, 1986, vol. 65, p. 1447.

    Article  CAS  Google Scholar 

  11. Verheyen, V., Rathbone, R., Jagtoyen, M., and Derbyshire, F., Carbon, 1995, vol. 33, no. 6, p. 763.

    Article  CAS  Google Scholar 

  12. Yoshizawa, N., Maruyama, K., Yamada, Y., et al., Fuel, 2002, vol. 81, no. 15, p. 1717.

    Article  CAS  Google Scholar 

  13. Lillo-Rodenas, M.A., Cazorla-Amoros, D., and Linares-Solano, A., Carbon, 2003, vol. 41, no. 2, p. 267.

    Article  CAS  Google Scholar 

  14. Lillo-Rodenas, M.A., Juan-Juan, J., CazorlaAmoros, D., and Linares-Solano, A., Carbon, 2004, vol. 42, no. 7, p. 1371.

    Article  CAS  Google Scholar 

  15. Lillo-Rodenas, M.A., Marco-Lozar, J.P., Cazorla-Amoros, D., and Linares-Solano, A., J. Anal. Appl. Pyrolysis, 2007, vol. 80, no. 1, p. 166.

    Article  CAS  Google Scholar 

  16. Diaz-Teran, J., Nevskaia, D.M., Fierro, J.L.G., et al., Micropor. Mesopor. Mater., 2003, vol. 60, p. 173.

    Article  CAS  Google Scholar 

  17. Robau-Sanchez, A., Cordero de la Rosa, F., Aguilar-Pliego, J., and Aguilar-Elguezabal, A., J. Porous Mater., 2006, vol. 13, no. 2, p. 123.

    Article  CAS  Google Scholar 

  18. Freitas, J.C.C., Schettino, M.A., Cunha, A.G., et al., Carbon, 2007, vol. 45, no. 5, p. 1097.

    Article  CAS  Google Scholar 

  19. Tay, T., Ucar, S., and Karagoz, S., J. Hazardous Mater., 2009, vol. 165, p. 481.

    Article  CAS  Google Scholar 

  20. Yamashita, Y. and Ouchi, K., Carbon, 1982, vol. 20, no. 1, p. 47.

    Article  CAS  Google Scholar 

  21. Xue, R. and Shen, Z., Carbon, 2003, vol. 41, no. 9, p. 1862.

    Article  CAS  Google Scholar 

  22. Marsh, H., Yan, D.S., O’Grady, T.M., and Wennenberg, A., Carbon, 1984, vol. 22, no. 6, p. 603.

    Article  CAS  Google Scholar 

  23. Chunlan, L., Shaoping, X., Yixiong, G., et al., Carbon, 2005, no. 11, p. 2295.

    Google Scholar 

  24. Qiao, W. and Yoon, S.-H., Energy Fuels, 2006, vol. 20, no. 4, p. 1680.

    Article  CAS  Google Scholar 

  25. Lu, C., Xu, S., Wang, M., et al., Carbon, 2007, vol. 45, no. 1, p. 206.

    Article  CAS  Google Scholar 

  26. Raymundo-Pinero, E., Azais, P., Cacciaguerra, T., et al., Carbon, 2005, vol. 43, no. 4, p. 786.

    Article  CAS  Google Scholar 

  27. Zhu, Y., Murali, S., Stoller, M.D., et al., Science, 2011, vol. 332, no. 6037, p. 1537.

    Article  CAS  Google Scholar 

  28. Tamarkina, Yu.V., Nauch. Tr. Donetsk. Nats. Tekhn. Univ., Ser. Khim. Khim. Tekhnol., 2010, no. 14 (162), p. 70.

    Google Scholar 

  29. Kucherenko, V.A., Shendrik, T.G., Tamarkina, Y.V., and Mysyk, R.D., Carbon, 2010, vol. 48, no. 15, p. 4556.

    Article  CAS  Google Scholar 

  30. Foo, K.Y. and Hameed, B.H., Chem. Eng. J., 2012, vol. 180, p. 66.

    Article  CAS  Google Scholar 

  31. Foo, K.Y. and Hameed, B.H., Chem. Eng. J., 2012, vol. 184, p. 57.

    Article  CAS  Google Scholar 

  32. Foo, K.Y. and Hameed, B.H., Bioresource Technol., 2012, vol. 112, p. 143.

    Article  CAS  Google Scholar 

  33. He, X., Li, R., Qiu, J., Xie, K., et al., Carbon, 2012, vol. 50, no. 13, p. 4911.

    Article  CAS  Google Scholar 

  34. Kasatochkin, V.I. and Larina, N.K., Stroenie i svoistva prirodnykh uglei (Structure and Properties of Natural Coals), Moscow: Nedra, 1975.

    Google Scholar 

  35. Kelemen, S.R., Freund, H., and Mims, C.A., Journal of Catalys, vol. 97, no. 1, p. 228.

  36. Pehlivan, E. and Arslan, G., Fuel Process. Technol., 2007, vol. 88, no. 1, p. 99.

    Article  CAS  Google Scholar 

  37. Guo, X., Zhang, S., and Shan, X., -q, J. Hazardous Mater., 2008, vol. 151.

  38. Lazarov, L. and Angelova, G., Struktura i reaktsii uglei (Structure and Reactions of Coals), Sofia: Izd. Bolgarskoi Akad. Nauk, 1990.

    Google Scholar 

  39. Shemyakin, M.M. and Shchukina, L.A., Usp. Khim., 1957, vol. 26, no. 5, p. 528.

    CAS  Google Scholar 

  40. Kukharenko, T.A., Okislennye v plastakh burye i kamennye ugli (In Situ Oxidized Brown and Black Coals), Moscow: Nedra, 1972.

    Google Scholar 

  41. Steelink, C., Coal Sci., 1966, vol. 55, p. 80.

    Article  Google Scholar 

  42. Kucherenko, V.A. and Zubova, T.I., Zh. Obshch. Khim., 1995, vol. 65, no. 8, p. 1256.

    CAS  Google Scholar 

  43. Rudakov, E.S., Kucherenko, V.A., Poluboyarov, V.A., et al., Dokl. Akad. Nauk USSR, Ser. B., 1983, o. 10, p. 62.

    Google Scholar 

  44. Sancier, K.M., Fuel, 1984, vol. 63, no. 5, p. 679.

    Article  CAS  Google Scholar 

  45. Tamarkina, Yu.V., Cand. Sci. (Chem.) Dissertation, Donetsk: Inst. Phys.-Org. Chem. Coal Chem., 2002.

    Google Scholar 

  46. Nesmeyanov, A.N. and Nesmeyanov, N.A., Nachala organicheskoi khimii (Fundamentals of Organic Chemistry), Moscow: Khimiya, 1974, vol 2.

    Google Scholar 

  47. Goikhman, A.Sh. and Solomko, V.P., Vysokomolekulyarnye soedineniya vklyucheniya (High-Molecular-Weight Inclusion Compounds), Kiev: Naukova Dumka, 1982.

    Google Scholar 

  48. Goikhman, A.Sh., Kaller, A.L., Matsibora, N.P., and Polyakova, G.V., Zh. Prikl. Khim., 1980, vol. 53, no. 2, p. 410.

    CAS  Google Scholar 

  49. Camier, R.G. and Siemon, S.R., Fuel, 1978.

    Google Scholar 

  50. Bratchun, V.I., Sapunov, V.A., Zverev, I.V., et al., Khim. Tverd. Topl. (Moscow), 1987, no. 6, p. 23.

    Google Scholar 

  51. Chernysh, I.G., Karpov, I.I., Prikhod’ko, G.P., and Shai, V.M., Fiziko-khimicheskie svoistva grafita i ego soedinenii (Physicochemical Properties of Graphite and Its Compounds), Kiev: Naukova Dumka, 1990.

    Google Scholar 

  52. Zaikovskii, A.V., Cand. Sci. (Chem.) Dissertation, Donetsk: Inst. Phys.-Org. Chem. Coal Chem., 1993.

    Google Scholar 

  53. Tamarkina, Yu.V., Bovan, L.A., and Kucherenko, V.A., Vopr. Khim. Khim. Tekhnol., 2008, no. 5, p. 77.

    Google Scholar 

  54. Utz, B.R., Nowak, M.A., and Fauth, D.J., Proc. Int. Conf. on Coal Science, Tokyo, 1989, vol. 1, p. 197.

    Google Scholar 

  55. Baltrus, J.P., Diehl, J.R., D’Este, J.R., and Ladner, E.P., Fuel, 1990, vol. 69, no. 1, p. 117.

    Article  CAS  Google Scholar 

  56. Srivastava, S.K., Saran, T., Sinha, J., et al., Fuel, 1988, vol. 67, p. 1680.

    Article  CAS  Google Scholar 

  57. Bovan, L.A., Tamko, V.A., Tamarkina, Yu.V., and Kucherenko, V.A., Khim. Tverd. Topl. (Moscow), 2009, no. 5, p. 14.

    Google Scholar 

  58. Kucherenko, V.A., Sapunov, V.A., Zubova, T.I., et al., Khim. Tverd. Topl. (Moscow), 1992, no. 4, pp. 96–101.

    Google Scholar 

  59. Kucherenko, V.A., Zubova, T.I., Shapranov, V.V., and Yaroshenko, A.P., Ukr. Khim. Zh., 1992, vol. 58, no. 4, p. 446.

    CAS  Google Scholar 

  60. Todres, Z.V., Ion-radikaly v organicheskom sinteze (Radical Ions in Organic Synthesis), Moscow: Khimiya, 1986.

    Google Scholar 

  61. Delannay, F., Tysoe, W.T., Heinemann, H., and Somorjai, G.A., Appl. Catal., 1984, vol. 10, no. 2, p. 111.

    Article  CAS  Google Scholar 

  62. Karagoz, S., Bhaskar, T., Muto, A., and Sakata, Y., Fuel, 2004, vol. 83, nos 17–18, p. 2293.

    Article  Google Scholar 

  63. Klar, E., Politsiklicheskie uglevodorody (Polycyclic Hydrocarbons), Moscow: Khimiya, 1971, vol. 2.

  64. Roldan, S., Villar, I., and Ruiz, V., Energy Fuels, 2010, vol. 24, no. 6, p. 3422.

    Article  CAS  Google Scholar 

  65. Fuente, E., Gil, R.R., Giron, R.P., et al., Carbon, 2010, vol. 48, no. 4, p. 1032.

    Article  CAS  Google Scholar 

  66. Armandi, M., Bonelli, B., Geobaldo, F., and Garrone, E., Micropor. Mesopor. Mater., 2010, vol. 132, no. 3, p. 414.

    Article  CAS  Google Scholar 

  67. Di Blasi, C., Galgano, A., and Branca, C., Energy Fuels, 2009, vol. 23, no. 2, p. D. 1045.

    Article  Google Scholar 

  68. Jibril, B.Y., Al-Maamari, R.S., Hegde, G., et al., J. Anal. Appl. Pyrolysis, 2007, vol. 80, no. 2, p. 277.

    Article  CAS  Google Scholar 

  69. Yang, T. and Lua, A.C., Micropor. Mesopor. Mater., 2003, vol. 63, nos. 1–3, p. 113.

    Article  CAS  Google Scholar 

  70. Xiao, R., Xu, S., Li, Q., and Su, Y., J. Anal. Appl. Pyrolysis, 2012, vol. 96, p. 120.

    Article  CAS  Google Scholar 

  71. Martinez-Escandell, M., Monteiro de Castro, M., Molina-Sabio, M., and Rodriguez-Reinoso, F., Fuel Process. Technol., 2013, vol. 106, p. 402.

    Article  CAS  Google Scholar 

  72. Matsukata, M., Fujikawa, T., Kikuchi, E., and Morita, Y., Energy Fuels, 1988, vol. 2, no. 6, p. 750.

    Article  CAS  Google Scholar 

  73. Lu, C., Xu, S., and Liu, C., J. Anal. Appl. Pyrolysis, 2010, vol. 87, no. 2, p. 282.

    Article  CAS  Google Scholar 

  74. Schmid, M., Mahfouz, R., and Bouhrara, M., Carbon, 2012, vol. 50, no. 14, p. 5292.

    Article  CAS  Google Scholar 

  75. Takai, K., Eto, S., Inaguma, M., and Enoki, T., Chem. Solids, 2009, vol. 69, nos. 5–6, p. 1182.

    Google Scholar 

  76. Hu, Z. and Vansant, E.F., Microporous materials, 1995, vol. 3, no. 6, p. D. 603.

    Article  Google Scholar 

  77. McKee, D.W., Chemistry and Physics of Coal Utilization, New York: APS, 1980.

    Google Scholar 

  78. Strelko, V.V., Gerasimenko, N.V., Kartel’, N.T., et al., Khim. Tverd. Topl. (Moscow), 2003, no. 1, p. 77.

    Google Scholar 

  79. Mochida, I., Nakamura, E., Maeda, K., and Takeshita, K., Carbon, 1975, vol. 13, no. 6, p. 489.

    Article  CAS  Google Scholar 

  80. Robau-Sanchez, A., Aguilar-Elguezabal, A., and Aguilar-Pliego, J., Micropor. Mesopor. Mater., 2005, vol. 85.

  81. Gomez-Serrano, V., Sanchez-Iniguez, F., Bernalte-Garcia, A., and Valenzuela-Calahorro, C., Fuel, 1990, vol. 69, no. 3, p. 391.

    Article  CAS  Google Scholar 

  82. McKee D.W., Fuel, 1983, vol. 62, no. 2, p. 170.

    Article  CAS  Google Scholar 

  83. Cerfontain, M.B. and Moulijn, J.A., Fuel, 1983, vol. 62, no. 2, p. 256.

    Article  CAS  Google Scholar 

  84. Mims, C.A., Fuel, 1983, vol. 62, no. 2, p. 730.

    Article  Google Scholar 

  85. Kapteijn, F., Jurriaans, J., and Moulijn, J.A., Fuel, 1983, vol. 62, no. 2, p. 249.

    Article  CAS  Google Scholar 

  86. Vorob’ev, V.N., Fedorova, I.B., Martynov, Yu.N., and Andryushchenko, L.N., in Issledovanie sostava i svoistv uglei Vostochnoi Sibiri i produktov ikh pererabotki (Study of the Composition and Properties of Coals from Eastern Siberia and Their Conversion Products), Irkutsk: Izd. Irkutsk. Univ., 1986, p. 60.

    Google Scholar 

  87. Wigmans, T., Goebel, J.C., and Moulijn, J.A., Carbon, 1983, vol. 21, no. 3, p. 295.

    Article  CAS  Google Scholar 

  88. Otowa, T., Tanibata, R., and Itoh, M., Gas Separation Purification, 1993, vol. 7, no. 4, p. 241.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Tamarkina.

Additional information

Original Russian Text © Yu.V. Tamarkina, V.A. Kucherenko, T.G. Shendrik, 2014, published in Khimiya Tverdogo Topliva, 2014, No. 4, pp. 38–46.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tamarkina, Y.V., Kucherenko, V.A. & Shendrik, T.G. Alkaline activation of coals and carbon-base materials. Solid Fuel Chem. 48, 251–259 (2014). https://doi.org/10.3103/S0361521914040119

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0361521914040119

Keywords

Navigation