Skip to main content
Log in

An Asynchronous Discrete Model of Chemical Interactions in Simple Neuronal Systems

  • Published:
Scientific and Technical Information Processing Aims and scope

Abstract

An asynchronous discrete model of nonsynaptic chemical interactions between neurons is proposed. The model significantly extends the previous work [1, 2] by novel concepts that make it more biologically plausible. In the model, neurons interact by emitting neurotransmitters to the shared extracellular space (ECS). We introduce the dynamics of membrane potentials that comprises two factors: the endogenous rates of change depending on the neuron’s firing type and the exogenous rates of change depending on the concentrations of neurotransmitters that the neuron is sensitive to. The neuron’s firing type is determined by the individual composition of endogenous rates. We consider three basic firing types: oscillatory, tonic, and reactive. Each firing type is essential for modeling central pattern generators—neural ensembles that generate rhythmic activity in the absence of external stimuli. Differences in endogenous rates of different neurons lead to asynchronous neural interactions and significant variability of phase durations in the activity patterns present in simple neural systems. The algorithm computing the behavior of the proposed model is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bazenkov, N., Vorontsov, D., Dyakonova, V., Zhilyakova, L., Zakharov, I., Kuznetsov, O., Kulivets, S., and Sakharov, D., Discrete modeling of neuronal interactions in multi-neurotransmitter networks, Iskusstv. Intell. Prinyatie Reshenii, 2017, no. 2, pp. 55–73.

    Google Scholar 

  2. Bazenkov, N., Dyakonova, V., Kuznetsov, O., Sakharov, D., Vorontsov, D., and Zhilyakova, L., Discrete modeling of the multi-transmitter neural networks with neuronal competition, Biologically Inspired Cognitive Architectures (BICA) for Young Scientists; Adv. Intell. Syst. Comput., 2018, vol. 636, pp. 10–16.

    Article  Google Scholar 

  3. McCulloch, W.S. and Pitts, W., A logical calculus of the ideas, Bull. Math. Biophys., 1943, vol. 5, pp. 115–133.

    Article  MathSciNet  MATH  Google Scholar 

  4. Hopfield, J.J., Neural networks and physical systems with emergent collective computational abilities, Proc. Natl. Acad. Sci., 1982, vol. 79, no. 8.

    Google Scholar 

  5. Haykin, S., Neural Networks and Learning Machines, Prentice Hall, 2009, 3rd ed.

    Google Scholar 

  6. LeCun, Y., Bengio, Y., and Hinton, G., Deep learning, Nature, 2015, vol. 521, no. 7553, pp. 436–444.

    Article  Google Scholar 

  7. Goodfellow, I., Bengio, Y., and Courville, A., Deep Learning, MIT Press, 2016.

    MATH  Google Scholar 

  8. Deng, L. and Yu, D., Deep learning: Methods and applications, Found. Trends Signal Process., 2014, vol. 7, nos. 3–4, pp. 1–199.

    MathSciNet  Google Scholar 

  9. Bengio, Y., Lamblin, P., Popovici, P., and Larochelle, H., Greedy layer-wise training of deep networks, Adv. Neural Inf. Process. Syst., 2007, vol. 19.

  10. Hinton, G.E., Osindero, S., and Teh, Y.W., A fast learning algorithm for deep belief nets, Neural Comput., 2006, vol. 18, pp. 1527–1554.

    Article  MathSciNet  MATH  Google Scholar 

  11. Shumsky, S.A., Deep learning: Ten years later, XIX mezhdunarodnaya nauchno-tekhnicheskaya konferencia “Neiroinformatika-2017": Lekcii po neiroinformatike (XIX International Scientific and Technical Conference Neuroinformatics-2017: Lectures on Neuroinformatics), Moscow, 2017, pp. 98–131.

    Google Scholar 

  12. Abbott, L.F., Lapique’s introduction of the integrateand- fire model neuron, Brain Res. Bull., 1907, vol. 50, nos. 5–6, pp. 303–304.

    Google Scholar 

  13. Hodgkin, A.L. and Huxley, A.F., A quantitative description of the membrane current and its applications to conduction and excitation in nerve, J. Physiol. (London), 1952, vol. 116, pp. 500–544.

    Article  Google Scholar 

  14. FitzHugh, R., Mathematical models of excitation and propagation in nerve, in Biological Engineering, Schwan, H.P., Ed., New York: McGraw-Hill Book Co., 1969, ch. 1, pp. 1–85.

    Google Scholar 

  15. Nagumo, J., Arimoto, S., and Yoshizawa, S., An active pulse transmission line simulating nerve axon, Proc. IRE, 1962, vol. 50, pp. 2061–2070.

    Article  Google Scholar 

  16. Morris, C. and Lecar, H., Voltage Oscillations in the barnacle giant muscle fiber, Biophys. J., 1981, vol. 35, no. 1, pp. 193–213.

    Article  Google Scholar 

  17. Vavoulis, D., Straub, V., Kemenes, I., Kemenes, G., Feng, J., and Benjamin, P., Dynamic control of a central pattern generator circuit: A computational model of the snail feeding network, Eur. J. Neurosci., 2007, vol. 25, pp. 2805–2818.

    Article  Google Scholar 

  18. Izhikevich, E., Int. J. Bifurcation Chaos, 2000, vol. 10, no. 6, pp. 1171–1266.

    Article  MathSciNet  Google Scholar 

  19. Izhikevich, E., Which model to use for cortical spiking neurons?, IEEE Trans. Neural Networks, 2004, vol. 15, no. 5.

    Google Scholar 

  20. Brunel, N., Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons, J. Comput. Neurosci., 2000, vol. 8, no. 3, pp. 183–208. https://doi.org/.10.1023/A:1008925309027

    Article  MathSciNet  MATH  Google Scholar 

  21. Ladenbauer, J., Augustin, M., Shiau, L., and Obermayer, K., Impact of adaptation currents on synchronization of coupled exponential integrate-and-fire neurons, PLoS Comput. Biol., 2012, vol. 8, no. 4, e1002478. https://doi.org/.10.1371/journal.pcbi.1002478

    Article  MathSciNet  Google Scholar 

  22. Delahunt, C.B., Riffell, J.A., and Kutz, J.N., Biological mechanisms for learning: A computational model of olfactory learning in the Manduca sexta moth, with applications to neural nets, ArXiv.org: 1802.02678. https://arxiv.org/abs/1802.02678. Accessed April 10, 2018.

    Google Scholar 

  23. Balaban, P.M., Vorontsov, D.D., D’yakonova, V.E., D’yakonova, T.L., Zakharov, I.S., Korshunova, T.A., Orlov, O.Yu., Pavlova, G.A., Panchin, Yu.V., Sakharov, D.A., and Falikman, M.V., Central pattern generators, Neurosci. Behav. Physiol., 2015, vol. 45, no. 1, pp. 42–57.

    Article  Google Scholar 

  24. Mulloney, B. and Smarandache, C., Fifty years of CPGs: Two neuroethological papers that shaped the course of neuroscience, Front. Behav. Neurosci., 2010, vol. 4, no. 45, pp. 1–8.

    Google Scholar 

  25. Dynamic Biological Networks: The Stomatogastric Nervous System, Harris-Warrick, R.M., Marder, E., Selverston, A.I., and Moulins, M., Eds., Cambridge, MA: MIT Press, 1992.

  26. Vizi, E.S., Kiss, J.P., and Lendvai, B., Nonsynaptic communication in the central nervous system, Rev. Neurochem. Int., 2004, vol. 45, pp. 443–451.

    Article  Google Scholar 

  27. De-Miguel, F.F. and Trueta, C., Synaptic and extrasynaptic secretion of serotonin, Cell Mol. Neurobiol., 2005, vol. 25, pp. 297–312.

    Article  Google Scholar 

  28. Sem’yanov, A.V., Diffusional extrasynaptic neurotransmission via glutamate and GABA, Neurosci. Behav. Physiol., 2005, vol. 35, pp. 253–266.

    Article  Google Scholar 

  29. Dyakonova, T.L. and Dyakonova, V.E., Coordination of rhythm-generating units via NO and extrasynaptic neurotransmitter release, J. Comput. Physiol. A, 2010, vol. 196, no. 8, pp. 529–541.

    Article  Google Scholar 

  30. Bargmann, C.I., Beyond the connectome: How neuromodulators shape neural circuits, BioEssays, 2012, vol. 34, no. 6, pp. 458–465.

    Article  Google Scholar 

  31. Artemov, N.M., Sakharov, D.A., and Koshtoyants, K.S., Raboty po khimicheskim osnovam mekhanizmov nervnoy deyatelnosti (Works on Chemical Foundations of Nervous Activity Mechanisms), Moscow: Nauka, ch. 3, pp. 106–162.

  32. Brezina, V., Beyond the wiring diagram: Signalling through complex neuromodulator networks, Philos. Trans. R. Soc. Lond. B. Biol. Sci., 2010, vol. 12, vol. 365, no. 1551, pp. 2363–2374.

    Article  Google Scholar 

  33. Sakharov, D.A., The biological substrate for the generation of behavioral acts, Zh. Obshch. Biol., 2012, vol. 73, no. 5, pp. 334–348.

    Google Scholar 

  34. Agnati, L.F., Guidolin, D., Guescini, M., Genedani, S., and Fuxe, K., Understanding wiring and volume transmission, Brain Res. Rev., 2010, vol. 64, pp. 137–159.

    Article  Google Scholar 

  35. Dyakonova, V.E., Neurotransmitter mechanisms of context-dependent behavior, Zh. Vyssh. Nerv. Deyat., 2012, vol. 62, no. 6, pp. 1–17.

    Google Scholar 

  36. Marder, E. and Bucher, D., Central pattern generators and the control of rhythmic movements, Curr. Biol., 2001, vol. 11, no. 23, pp. R986–996.

    Article  Google Scholar 

  37. Amari, S.I., Learning patterns and pattern sequences by self-organizing nets of threshold elements, IEEE Trans. Comput., 1972, vol. C–21, no. 11, pp. 1197–1206.

    Article  MathSciNet  MATH  Google Scholar 

  38. Wang, R.-S. and Albert, R., Effects of community structure on the dynamics of random threshold networks, Phys. Rev. E, 2013, vol. 87.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Bazenkov.

Additional information

Original Russian Text © O.P. Kuznetsov, N.I. Bazenkov, B.A. Boldyshev, L.Yu. Zhilyakova, S.G. Kulivets, I.A. Chistopolsky, 2018, published in Iskusstvennyi Intellekt i Prinyatie Reshenii, 2018, No. 2, pp. 3–20.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, O.P., Bazenkov, N.I., Boldyshev, B.A. et al. An Asynchronous Discrete Model of Chemical Interactions in Simple Neuronal Systems. Sci. Tech. Inf. Proc. 45, 375–389 (2018). https://doi.org/10.3103/S0147688218060072

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0147688218060072

Keywords

Navigation